首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Analysis of cell free fetal (cff) DNA in maternal plasma is used routinely for non invasive prenatal diagnosis (NIPD) of fetal sex determination, fetal rhesus D status and some single gene disorders. True positive results rely on detection of the fetal target being analysed. No amplification of the target may be interpreted either as a true negative result or a false negative result due to the absence or very low levels of cffDNA. The hypermethylated RASSF1A promoter has been reported as a universal fetal marker to confirm the presence of cffDNA. Using methylation-sensitive restriction enzymes hypomethylated maternal sequences are digested leaving hypermethylated fetal sequences detectable. Complete digestion of maternal sequences is required to eliminate false positive results.

Methods

cfDNA was extracted from maternal plasma (n = 90) and digested with methylation-sensitive and insensitive restriction enzymes. Analysis of RASSF1A, SRY and DYS14 was performed by real-time PCR.

Results

Hypermethylated RASSF1A was amplified for 79 samples (88%) indicating the presence of cffDNA. SRY real time PCR results and fetal sex at delivery were 100% accurate. Eleven samples (12%) had no detectable hypermethylated RASSF1A and 10 of these (91%) had gestational ages less than 7 weeks 2 days. Six of these samples were male at delivery, five had inconclusive results for SRY analysis and one sample had no amplifiable SRY.

Conclusion

Use of this assay for the detection of hypermethylated RASSF1A as a universal fetal marker has the potential to improve the diagnostic reliability of NIPD for fetal sex determination and single gene disorders.  相似文献   

2.
Detection and characterization of circulating cell-free fetal DNA (cffDNA) from maternal circulation requires an extremely sensitive and precise method due to very low cffDNA concentration. In our study, droplet digital PCR (ddPCR) was implemented for fetal RHD genotyping from maternal plasma to compare this new quantification alternative with real-time PCR (qPCR) as a golden standard for quantitative analysis of cffDNA. In the first stage of study, a DNA quantification standard was used. Clinical samples, including 10 non-pregnant and 35 pregnant women, were analyzed as a next step. Both methods’ performance parameters—standard curve linearity, detection limit and measurement precision—were evaluated. ddPCR in comparison with qPCR has demonstrated sufficient sensitivity for analysing of cffDNA and determination of fetal RhD status from maternal circulation, results of both methods strongly correlated. Despite the more demanding workflow, ddPCR was found to be slightly more precise technology, as evaluated using quantitative standard. Regarding the clinical samples, the precision of both methods equalized with decreasing concentrations of tested DNA samples. In case of cffDNA with very low concentrations, variance parameters of both techniques were comparable. Detected levels of fetal cfDNA in maternal plasma were slightly higher than expected and correlated significantly with gestational age as measured by both methods (ddPCR r = 0.459; qPCR r = 0.438).  相似文献   

3.

Objectives

RASSF1A has been described to be differentially methylated between fetal and maternal DNA and can therefore be used as a universal sex-independent marker to confirm the presence of fetal sequences in maternal plasma. However, this requires highly sensitive methods. We have previously shown that Pyrophosphorolysis-activated Polymerization (PAP) is a highly sensitive technique that can be used in noninvasive prenatal diagnosis. In this study, we have used PAP in combination with bisulfite conversion to develop a new universal methylation-based assay for the detection of fetal methylated RASSF1A sequences in maternal plasma.

Methods

Bisulfite sequencing was performed on maternal genomic (g)DNA and fetal gDNA from chorionic villi to determine differentially methylated regions in the RASSF1A gene using bisulfite specific PCR primers. Methylation specific primers for PAP were designed for the detection of fetal methylated RASSF1A sequences after bisulfite conversion and validated.

Results

Serial dilutions of fetal gDNA in a background of maternal gDNA show a relative percentage of ∼3% can be detected using this assay. Furthermore, fetal methylated RASSF1A sequences were detected both retrospectively as well as prospectively in all maternal plasma samples tested (n = 71). No methylated RASSF1A specific bands were observed in corresponding maternal gDNA. Specificity was further determined by testing anonymized plasma from non-pregnant females (n = 24) and males (n = 21). Also, no methylated RASSF1A sequences were detected here, showing this assay is very specific for methylated fetal DNA. Combining all samples and controls, we obtain an overall sensitivity and specificity of 100% (95% CI 98.4%–100%).

Conclusions

Our data demonstrate that using a combination of bisulfite conversion and PAP fetal methylated RASSF1A sequences can be detected with extreme sensitivity in a universal and sex-independent manner. Therefore, this assay could be of great value as an addition to current techniques used in noninvasive prenatal diagnostics.  相似文献   

4.
Lipopolysaccharide (LPS) in high doses inhibits placental multidrug resistance P-glycoprotein (P-gp - Abcb1a/b) and breast cancer resistance protein (BCRP - Abcg2). This potentially impairs fetal protection against harmful factors in the maternal circulation. However, it is unknown whether LPS exposure, at doses that mimic sub-lethal clinical infection, alters placental multidrug resistance. We hypothesized that sub-lethal (fetal) LPS exposure reduces placental P-gp activity. Acute LPS (n = 19;150 µg/kg; ip) or vehicle (n = 19) were given to C57BL/6 mice at E15.5 and E17.5. Placentas and fetal-units were collected 4 and 24 h following injection. Chronic LPS (n = 6; 5 µg/kg/day; ip) or vehicle (n = 5) were administered from E11.5–15.5 and tissues were collected 4 h after final treatment. P-gp activity was assessed by [3H]digoxin accumulation. Placental Abcb1a/b, Abcg2, interleukin-6 (Il-6), Tnf-α, Il-10 and toll-like receptor-4 (Tlr-4) mRNA were measured by qPCR. Maternal plasma IL-6 was determined. At E15.5, maternal IL-6 was elevated 4 h after single (p<0.001) and chronic (p<0.05) LPS, but levels had returned to baseline by 24 h. Placental Il-6 mRNA was also increased after acute and chronic LPS treatments (p<0.05), whereas Abcb1a/b and Abcg2 mRNA were unaffected. However, fetal [3H]digoxin accumulation was increased (p<0.05) 4 h after acute LPS, and maternal [3H]digoxin myocardial accumulation was increased (p<0.05) in mice exposed to chronic LPS treatments. There was a negative correlation between fetal [3H]digoxin accumulation and placental size (p<0.0001). Acute and chronic sub-lethal LPS exposure resulted in a robust inflammatory response in the maternal systemic circulation and placenta. Acute infection decreased placental P-gp activity in a time- and gestational age-dependent manner. Chronic LPS decreased P-gp activity in the maternal myocardium and there was a trend for fetuses with smaller placentas to accumulate more P-gp substrate than their larger counterparts. Collectively, we demonstrate that acute sub-lethal LPS exposure during pregnancy impairs fetal protection against potentially harmful xenobiotics in the maternal circulation.  相似文献   

5.

Background

Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD). We hypothesize that ddPCR is better at quantifying the total bacterial load in lung tissue versus qPCR.

Methods

Control (n = 16) and COPD GOLD 2 (n = 16) tissue samples were obtained from patients who underwent lung resection surgery, were cut on a cryotome, and sections were assigned for use in quantitative histology or for DNA extraction. qPCR and ddPCR were performed on these samples using primers spanning the V2 region on the 16S rRNA gene along with negative controls. Total 16S counts were compared between the two methods. Both methods were assessed for correlations with quantitative histology measurements of the tissue.

Results

There was no difference in the average total 16S counts (P>0.05) between the two methods. However, the negative controls contained significantly lower counts in the ddPCR (0.55 ± 0.28 16S/uL) than in the qPCR assay (1.00 ± 0.70 16S copies) (P <0.05). The coefficient of variation was significantly lower for the ddPCR assay (0.18 ± 0.14) versus the qPCR assay (0.62 ± 0.29) (P<0.05).

Conclusion

Overall the ddPCR 16S assay performed better by reducing the background noise in 16S of the negative controls compared with 16S qPCR assay.  相似文献   

6.
Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been recently described as an alternative PCR-based technique for absolute quantification with higher accuracy compared to qPCR. Here, a comparison was made between the droplet digital PCR (ddPCR) and the seminested qPCR for quantification of unspliced (us) and multiply spliced (ms) CA HIV-1 RNA. Synthetic RNA standards and CA HIV-1 RNA from infected patients on and off ART (N = 34) were quantified with both methods. Correlations were observed between the methods both for serially diluted synthetic standards (usRNA: R2 = 0.97, msRNA: R2 = 0.92) and patient-derived samples (usRNA: R2 = 0.51, msRNA: R2 = 0.87). Seminested qPCR showed better quantitative linearity, accuracy and sensitivity in the quantification of synthetic standards than ddPCR, especially in the lower quantification ranges. Both methods demonstrated equally high detection rate of usRNA in patient samples on and off ART (91%), whereas ddPCR detected msRNA in larger proportion of samples from ART-treated patients (p = 0.13). We observed an average agreement between the methods for usRNA quantification in patient samples, albeit with a large standard deviation (bias = 0.05±0.75 log10). However, a bias of 0.94±0.36 log10 was observed for msRNA. No-template controls were consistently negative in the seminested qPCR, but yielded a positive ddPCR signal for some wells. Therefore, the false positive signals may have affected the detection power of ddPCR in this study. Digital PCR is promising for HIV nucleic acid quantification, but the false positive signals need further attention. Quantitative assays for CA HIV RNA have the potential to improve monitoring of patients on ART and to be used in clinical studies aimed at HIV eradication, but should be cross-validated by multiple laboratories prior to wider use.  相似文献   

7.
Human cytomegalovirus (CMV) infection of the developing fetus can result in adverse pregnancy outcomes including death in utero. Fetal injury results from direct viral cytopathic damage to the CMV-infected fetus, although evidence suggests CMV placental infection may indirectly cause injury to the fetus, possibly via immune dysregulation with placental dysfunction. This study investigated the effects of CMV infection on expression of the chemokine MCP-1 (CCL2) and cytokine TNF-α in placentae from naturally infected stillborn babies, and compared these changes with those found in placental villous explant histocultures acutely infected with CMV ex vivo. Tissue cytokine protein levels were assessed using quantitative immunohistochemistry. CMV-infected placentae from stillborn babies had significantly elevated MCP-1 and TNF-α levels compared with uninfected placentae (p = 0.001 and p = 0.007), which was not observed in placentae infected with other microorganisms (p = 0.62 and p = 0.71) (n = 7 per group). Modelling acute clinical infection using ex vivo placental explant histocultures showed infection with CMV laboratory strain AD169 (0.2 pfu/ml) caused significantly elevated expression of MCP-1 and TNF-α compared with uninfected explants (p = 0.0003 and p<0.0001) (n = 25 per group). Explant infection with wild-type Merlin at a tenfold lower multiplicity of infection (0.02 pfu/ml), caused a significant positive correlation between increased explant infection and upregulation of MCP-1 and TNF-α expression (p = 0.0001 and p = 0.017). Cytokine dysregulation has been associated with adverse outcomes of pregnancy, and can negatively affect placental development and function. These novel findings demonstrate CMV infection modulates the placental immune environment in vivo and in a multicellular ex vivo model, suggesting CMV-induced cytokine modulation as a potential initiator and/or exacerbator of placental and fetal injury.  相似文献   

8.
Measuring total cell-free DNA (cfDNA) or cancer-specific mutations herein has presented as new tools in aiding the treatment of cancer patients. Studies show that total cfDNA bears prognostic value in metastatic colorectal cancer (mCRC) and that measuring cancer-specific mutations could supplement biopsies. However, limited information is available on the performance of different methods. Blood samples from 28 patients with mCRC and known KRAS mutation status were included. cfDNA was extracted and quantified with droplet digital polymerase chain reaction (ddPCR) measuring Beta-2 Microglobulin. KRAS mutation detection was performed using ddPCR (Bio-Rad) and next-generation sequencing (NGS, Ion Torrent PGM). Comparing KRAS mutation status in plasma and tissue revealed concordance rates of 79% and 89% for NGS and ddPCR. Strong correlation between the methods was observed. Most KRAS mutations were also detectable in 10-fold diluted samples using the ddPCR. We find that for detection of KRAS mutations in ctDNA ddPCR was superior to NGS both in analysis success rate and concordance to tissue. We further present results indicating that lower amount of plasma may be used for detection of KRAS mutations in mCRC.  相似文献   

9.

Background

M. tuberculosis and helminth infection each affects one third of the world population. Helminth infections down regulate cell mediated immune responses and this may contribute to lower efficacy of BCG vaccination and higher prevalence of tuberculosis.

Objective

To determine the effect of maternal helminth infection on maternal and neonatal immune function and immunity to TB.

Methods

In this cross sectional study, eighty five pregnant women were screened for parasitic and latent TB infections using Kato-Katz and QFT-GIT tests, respectively. IFN-γ and IL-4 ELISpot on Cord blood Mononuclear Cells, and total IgE and TB specific IgG ELISA on cord blood plasma was performed to investigate the possible effect of maternal helminth and/or latent TB co-infection on maternal and neonatal immune function and immunity to TB.

Result

The prevalence of helminth infections in pregnant women was 27% (n = 23), with Schistosoma mansoni the most common helminth species observed (20% of women were infected). Among the total of 85 study participants 25.8% were QFT-GIT positive and 17% had an indeterminate result. The mean total IgE value of cord blood was significantly higher in helminth positive than negative women (0.76 vs 0.47, p = 0.042). Cross placental transfer of TB specific IgG was significantly higher in helminth positive (21.9±7.9) than negative (12.3±5.1), p = 0.002) Latent TB Infection positive participants. The IFN-γ response of CBMCs to ESAT-6/CFP-10 cocktail (50 vs 116, p = 0.018) and PPD (58 vs 123, p = 0.02) was significantly lower in helminth positive than negative participants. There was no significant difference in IL-4 response of CBMCs between helminth negative and positive participants.

Conclusions

Maternal helminth infection had a significant association with the IFN-γ response of CBMCs, total IgE and cross placental transfer of TB specific IgG. Therefore, further studies should be conducted to determine the effect of these factors on neonatal immune response to BCG vaccination.  相似文献   

10.
11.
Early stress can cause metabolic disorders in adulthood. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) deficiency has also been linked to the development of metabolic disorders. The aim of this study was to assess whether an early stressful event such as maternal separation interacts with the nutritional availability of n-3 PUFAs during the life course on metabolic aspects. Litters were randomized into: maternal separated (MS) and non-handled (NH). The MS group was removed from their dam for 3 hours per day and put in an incubator at 32°C on days 1° to 10° postnatal (PND). On PND 35, males were subdivided into diets that were adequate or deficient in n-3 PUFAs, and this intervention was applied during the subsequent 15 weeks. Animal''s body weight and food consumption were measured weekly, and at the end of the treatment tissues were collected. MS was associated with increased food intake (p = 0.047) and weight gain (p = 0.012), but no differences were found in the NPY hypothalamic content between the groups. MS rats had also increased deposition of abdominal fat (p<0.001) and plasma triglycerides (p = 0.018) when compared to the NH group. Interactions between early life stress and n-3 PUFAs deficiency were found in plasma insulin (p = 0.033), HOMA index (p = 0.049), leptin (p = 0.010) and liver PEPCK expression (p = 0.050), in which the metabolic vulnerability in the MS group was aggravated by the n-3 PUFAs deficient diet exposure. This was associated with specific alterations in the peripheral fatty acid profile. Variations in the neonatal environment interact with nutritional aspects during the life course, such as n-3 PUFAs diet content, and persistently alter the metabolic vulnerability in adulthood.  相似文献   

12.
In a longitudinal cohort of ∼700 children in New York City, the prevalence of asthma (>25%) is among the highest in the US. This high risk may in part be caused by transplacental exposure to traffic-related polycyclic aromatic hydrocarbons (PAHs) but biomarkers informative of PAH-asthma relationships is lacking. We here hypothesized that epigenetic marks associated with transplacental PAH exposure and/or childhood asthma risk could be identified in fetal tissues. Mothers completed personal prenatal air monitoring for PAH exposure determination. Methylation sensitive restriction fingerprinting was used to analyze umbilical cord white blood cell (UCWBC) DNA of 20 cohort children. Over 30 DNA sequences were identified whose methylation status was dependent on the level of maternal PAH exposure. Six sequences were found to be homologous to known genes having one or more 5′-CpG island(s) (5′-CGI). Of these, acyl-CoA synthetase long-chain family member 3 (ACSL3) exhibited the highest concordance between the extent of methylation of its 5′-CGI in UCWBCs and the level of gene expression in matched fetal placental tissues in the initial 20 cohort children. ACSL3 was therefore chosen for further investigation in a larger sample of 56 cohort children. Methylation of the ACSL3 5′-CGI was found to be significantly associated with maternal airborne PAH exposure exceeding 2.41 ng/m3 (OR = 13.8; p<0.001; sensitivity = 75%; specificity = 82%) and with a parental report of asthma symptoms in children prior to age 5 (OR = 3.9; p<0.05). Thus, if validated, methylated ACSL3 5′CGI in UCWBC DNA may be a surrogate endpoint for transplacental PAH exposure and/or a potential biomarker for environmentally-related asthma. This exploratory report provides a new blueprint for the discovery of epigenetic biomarkers relevant to other exposure assessments and/or investigations of exposure-disease relationships in birth cohorts. The results support the emerging theory of early origins of later life disease development.  相似文献   

13.
Malaria is known to have a negative impact on pregnant women and their foetuses. The efficacy of Sulfadoxine-Pyrimethamine (SP) used for intermittent preventive treatment (IPT) is being threatened by increasing levels of resistance. This study assessed malaria risk factors in women on intermittent preventive treatment with SP (IPTp-SP) at delivery and their effects on pregnancy outcome in Sanaga-Maritime Division, Cameroon. Socio-economic and obstetrical data of mothers and neonate birth weights were documented. Peripheral blood from 201 mothers and newborns as well as placental and cord blood were used to prepare thick and thin blood films. Maternal haemoglobin concentration was measured. The overall malaria parasite prevalence was 22.9% and 6.0% in mothers and newborns respectively. Monthly income lower than 28000 FCFA and young age were significantly associated with higher prevalence of placental malaria infection (p = 0.0048 and p = 0.019 respectively). Maternal infection significantly increased the risk of infection in newborns (OR = 48.4; p<0.0001). Haemoglobin concentration and birth weight were lower in infected mothers, although not significant. HIV infection was recorded in 6.0% of mothers and increased by 5-folds the risk of malaria parasite infection (OR = 5.38, p = 0.007). Attendance at antenatal clinic and level of education significantly influenced the utilisation of IPTp-SP (p<0.0001 and p = 0.018 respectively). Use of SP and mosquito net resulted in improved pregnancy outcome especially in primiparous, though the difference was not significant. Malaria infection in pregnancy is common and increases the risk of neonatal malaria infection. Preventive strategies are poorly implemented and their utilization has overall reasonable effect on malaria infection and pregnancy outcome.  相似文献   

14.
Adverse maternal environments can lead to increased fetal exposure to maternal cortisol, which can cause infant neurobehavioral deficits. The placenta regulates fetal cortisol exposure and response, and placental DNA methylation can influence this function. FK506 binding protein (FKBP5) is a negative regulator of cortisol response, FKBP5 methylation has been linked to brain morphology and mental disorder risk, and genetic variation of FKBP5 was associated with post-traumatic stress disorder in adults. We hypothesized that placental FKBP5 methylation and genetic variation contribute to gene expression control, and are associated with infant neurodevelopmental outcomes assessed using the Neonatal Intensive Care Unit (NICU) Network Neurobehavioral Scales (NNNS). In 509 infants enrolled in the Rhode Island Child Health Study, placental FKBP5 methylation was measured at intron 7 using quantitative bisulfite pyrosequencing. Placental FKBP5 mRNA was measured in a subset of 61 infants by quantitative PCR, and the SNP rs1360780 was genotyped using a quantitative allelic discrimination assay. Relationships between methylation, expression and NNNS scores were examined using linear models adjusted for confounding variables, then logistic models were created to determine the influence of methylation on membership in high risk groups of infants. FKBP5 methylation was negatively associated with expression (P = 0.08, r = −0.22); infants with the TT genotype had higher expression than individuals with CC and CT genotypes (P = 0.06), and those with CC genotype displayed a negative relationship between methylation and expression (P = 0.06, r = −0.43). Infants in the highest quartile of FKBP5 methylation had increased risk of NNNS high arousal compared to infants in the lowest quartile (OR 2.22, CI 1.07–4.61). TT genotype infants had increased odds of high NNNS stress abstinence (OR 1.98, CI 0.92–4.26). Placental FKBP5 methylation reduces expression in a genotype specific fashion, and genetic variation supersedes this effect. These genetic and epigenetic differences in expression may alter the placenta’s ability to modulate cortisol response and exposure, leading to altered neurobehavioral outcomes.  相似文献   

15.

Aims

To determine the impact of maternal and post-weaning consumption of a high fat diet on endothelium-dependent vasorelaxation and redox regulation in adult male mouse offspring.

Methods

Female C57BL6J mice were fed an obesogenic high fat diet (HF, 45% kcal fat) or standard chow (C, 21% kcal fat) pre-conception and throughout pregnancy and lactation. Post-weaning, male offspring were continued on the same diet as their mothers or placed on the alternative diet to give 4 dietary groups (C/C, HF/C, C/HF and HF/HF) which were studied at 15 or 30 weeks of age.

Results

There were significant effects of maternal diet on offspring body weight (p<0.004), systolic blood pressure (p = 0.026) and endothelium-dependent relaxation to ACh (p = 0.004) and NO production (p = 0.005) measured in the femoral artery. With control for maternal diet there was also an effect of offspring post-weaning dietary fat to increase systolic blood pressure (p<0.0001) and reduce endothelium-dependent relaxation (p = 0.022) and ACh-mediated NO production (p = 0.007). There was also a significant impact of age (p<0.005). Redox balance was perturbed, with altered regulation of vascular enzymes involved in ROS/NO signalling.

Conclusions

Maternal consumption of a HF diet is associated with changes in vascular function and oxidative balance in the offspring of similar magnitude to those seen with consumption of a high fat diet post-weaning. Further, this disadvantageous vascular phenotype is exacerbated by age to influence the risk of developing obesity, raised blood pressure and endothelial dysfunction in adult life.  相似文献   

16.

Background

Mitochondrial DNA (mtDNA) is a critical activator of inflammation and the innate immune system. However, mtDNA level has not been tested for its role as a biomarker in the intensive care unit (ICU). We hypothesized that circulating cell-free mtDNA levels would be associated with mortality and improve risk prediction in ICU patients.

Methods and Findings

Analyses of mtDNA levels were performed on blood samples obtained from two prospective observational cohort studies of ICU patients (the Brigham and Women''s Hospital Registry of Critical Illness [BWH RoCI, n = 200] and Molecular Epidemiology of Acute Respiratory Distress Syndrome [ME ARDS, n = 243]). mtDNA levels in plasma were assessed by measuring the copy number of the NADH dehydrogenase 1 gene using quantitative real-time PCR. Medical ICU patients with an elevated mtDNA level (≥3,200 copies/µl plasma) had increased odds of dying within 28 d of ICU admission in both the BWH RoCI (odds ratio [OR] 7.5, 95% CI 3.6–15.8, p = 1×10−7) and ME ARDS (OR 8.4, 95% CI 2.9–24.2, p = 9×10−5) cohorts, while no evidence for association was noted in non-medical ICU patients. The addition of an elevated mtDNA level improved the net reclassification index (NRI) of 28-d mortality among medical ICU patients when added to clinical models in both the BWH RoCI (NRI 79%, standard error 14%, p<1×10−4) and ME ARDS (NRI 55%, standard error 20%, p = 0.007) cohorts. In the BWH RoCI cohort, those with an elevated mtDNA level had an increased risk of death, even in analyses limited to patients with sepsis or acute respiratory distress syndrome. Study limitations include the lack of data elucidating the concise pathological roles of mtDNA in the patients, and the limited numbers of measurements for some of biomarkers.

Conclusions

Increased mtDNA levels are associated with ICU mortality, and inclusion of mtDNA level improves risk prediction in medical ICU patients. Our data suggest that mtDNA could serve as a viable plasma biomarker in medical ICU patients. Please see later in the article for the Editors'' Summary  相似文献   

17.

Background

Adult cardiorespiratory fitness and muscle strength are related to all-cause and cardiovascular mortality. Both are possibly related to birth weight, but it is unclear what the importance is of genetic, maternal and placental factors in these associations.

Design

Peak oxygen uptake and measures of strength, flexibility and balance were obtained yearly during adolescence (10–18 years) in 114 twin pairs in the Leuven Longitudinal Twin Study. Their birth weights had been collected prospectively within the East Flanders Prospective Twin Survey.

Results

We identified linear associations between birth weight and adolescent vertical jump (b = 1.96 cm per kg birth weight, P = 0.02), arm pull (b = 1.85 kg per kg birth weight P = 0.03) and flamingo balance (b = −1.82 attempts to stand one minute per kg birth weight, P = 0.03). Maximum oxygen uptake appeared to have a U-shaped association with birth weight (the smallest and largest children had the lowest uptake, P = 0.01), but this association was no longer significant after adjustment for parental BMI. Using the individual twin’s deviation from his own twin pair’s average birth weight, we found positive associations between birth weight and adolescent vertical jump (b = 3.49, P = 0.0007) and arm pull (b = 3.44, P = 0.02). Δ scores were calculated within the twin pairs as first born twin minus second born twin. Δ birth weight was associated with Δ vertical jump within MZ twin pairs only (b = 2.63, P = 0.009), which indicates importance of placental factors.

Conclusions

We found evidence for an association between adolescent physical performance (strength, balance and possibly peak oxygen uptake) and birth weight. The associations with vertical jump and arm pull were likely based on individual, more specifically placental (in the case of vertical jump) factors. Our results should be viewed as hypothesis-generating and need confirmation, but potentially support preventive strategies to optimize birth weight, for example via placental function, to target later fitness and health.  相似文献   

18.
Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA) and microRNAs (miRNAs). Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates. We also compare the effects of increasing time between venepuncture and centrifugation and differential centrifugation force on recovery of CNAs. cfDNA was quantified by TaqMan qPCR and targeted deep sequencing. miRNA profiles were assessed with TaqMan low-density arrays and assays. The QIAamp® DNA Blood Mini and Circulating nucleic acid kits gave the highest recovery of cfDNA and efficient recovery (>90%) of a 564bp spike-in. Moreover, targeted sequencing revealed overlapping cfDNA profiles and variant depth, including detection of HER2 gene amplification, using the Ion AmpliSeq™Cancer Hotspot Panel v2. Highest yields of miRNA and the synthetic Arabidopsis thaliana miR-159a spike-in were obtained using the miRNeasy Serum/Plasma kit, with saturation above 200 µl of plasma. miRNA profiles showed significant variation with increasing time before centrifugation (p<0.001) and increasing centrifugation force, with depletion of platelet associated miRNAs, whereas cfDNA was unaffected. However, sample replicates showed excellent reproducibility on TaqMan low density arrays (ρ = 0.96, p<0.0001). We also successfully generated miRNA profiles for plasma samples stored > 12 years, highlighting the potential for analysis of stored sample biobanks. In the era of the liquid biopsy, standardisation of methods is required to minimise variation, particularly for miRNA.  相似文献   

19.
Background:Noninvasive fetal sex determination by analyzing Y chromosome-specific sequences is very useful in the management of cases related to sex-linked genetic diseases. The aim of this study was to establish a non-invasive fetal sex determination test using Real-Time PCR and specific probes.Methods:The study was a prospective observational cohort study conducted from August 2018 to September 2019. Venous blood samples were collected from 25 Iranian pregnant women at weeks 7 to 25 of gestation. Cell-free DNA (cfDNA) was isolated from the plasma of samples and fetal sex was determined by SRY gene analysis using the Real-Time PCR technique. In the absence of SRY detection, the presence of fetal DNA was investigated using cfDNA treated with BstUI enzyme and PCR for the epigenetic marker RASSF1A.Results:Of the total samples analyzed, 48% were male and 52% female. The RASSF1A assay performed on SRY negative cases also confirmed the presence of cell-free fetal DNA. Genotype results were in full agreement with neonate gender, and the accuracy of noninvasive fetal sex determination was 100%.Conclusion:Fetal sex determination using the strategy applied in this study is noninvasive and highly accurate and can be exploited in the management of sex-linked genetic diseases.Key Words: Cell-free fetal DNA, Fetal sex determination, Noninvasive prenatal diagnosis, Sex-linked genetic diseases, SRY  相似文献   

20.

Background

Human promoter polymorphisms in the chemokine co-receptor 5 gene (CCR5) have been noted for association with mother-to-child transmission of HIV (HIV MTCT) as well as reduced receptor expression in vitro, but have not been clearly associated with CCR5 expression in vivo. Placental expression of CCR5 may be influenced by such polymorphisms as well as other in vivo regulatory factors.

Methodology/Principal Findings

We evaluated the associations between infant CCR5 polymorphisms, measures of maternal infection, and placental expression of CCR5 among mother-infant pairs in Blantyre, Malawi. RNA was extracted from placental tissue and used in multiplex real-time PCR to quantify gene expression. Through linear regression, we observed that CCR5-2554T (β = −0.67, 95% CI = −1.23, −0.11) and -2132T (β = −0.75, 95% CI = −0.131, −0.18) were significantly associated with reduced placental expression of CCR5. An incremental increase in CCR5 expression was observed for incremental increases in expression of two heparan sulfate genes involved in viral infection, HS3ST3A1 (β = 0.27, 95% CI = 0.18, 0.35) and HS3ST3B1 (β = 0.11, 95% CI = 0.06, 0.18). Among HIV infected mothers, an incremental increase in maternal HIV viral load was also associated with higher CCR5 expression (β = 0.76, 95% CI = 0.12, 1.39). Maternal HIV status had no overall effect (β = 0.072, 95% CI = −0.57, −0.72). Higher CCR5 expression was observed for mothers with malaria but was not statistically significant (β = 0.37, 95% CI = −0.43, 1.18).

Conclusions/Significance

These results provide in vivo evidence for genetic and environmental factors involved in the regulation of CCR5 expression in the placenta. Our findings also suggest that the measurement of placental expression of CCR5 alone is not an adequate indicator of the risk of mother-to-child transmission of HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号