首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca2+inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca2+response. RPE cells from Atrap−/− mice showed smaller AngII-evoked Ca2+peak (by 22%) and loss of sustained Ca2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca2+transients in the RPE by releasing Ca2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca2+elevation.  相似文献   

2.
Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved endothelium-dependent hyperpolarizaiton through endothelial potassium channels. Jujuboside B is a natural compound with new pharmacological effects on improving endothelial dysfunction and treating vascular diseases.  相似文献   

3.
The posttranslational modification of nuclear and cytosolic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) has been shown to play an important role in cellular response to stress. Although increases in O-GlcNAc levels have typically been thought to be substrate-driven, studies in several transformed cell lines reported that glucose deprivation increased O-GlcNAc levels by a number of different mechanisms. A major goal of this study therefore was to determine whether in primary cells, such as neonatal cardiomyocytes, glucose deprivation increases O-GlcNAc levels and if so by what mechanism. Glucose deprivation significantly increased cardiomyocyte O-GlcNAc levels in a time-dependent manner and was associated with decreased O-GlcNAcase (OGA) but not O-GlcNAc transferase (OGT) protein. This response was unaffected by either the addition of pyruvate as an alternative energy source or by the p38 MAPK inhibitor SB203580. However, the response to glucose deprivation was blocked completely by glucosamine, but not by inhibition of OGA with 2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. Interestingly, the CaMKII inhibitor KN93 also significantly reduced the response to glucose deprivation. Lowering extracellular Ca2+ with EGTA or blocking store operated Ca2+ entry with SKF96365 also attenuated the glucose deprivation-induced increase in O-GlcNAc. In C2C12 and HEK293 cells both glucose deprivation and heat shock increased O-GlcNAc levels, and CaMKII inhibitor KN93 attenuated the response to both stresses. These results suggest that increased intracellular calcium and subsequent activation of CaMKII play a key role in regulating the stress-induced increase in cellular O-GlcNAc levels.  相似文献   

4.

Background

Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca2+] ([Ca2+]i) is a prerequisite for NFAT nuclear translocation. Elevated [Ca2+]i in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca2+ channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca2+ influx and increase in [Ca2+]i is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca2+]i leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca2+/NFAT pathway.

Methods

Human PASMC were cultured under hypoxia (3% O2) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca2+]i was measured with a dynamic digital Ca2+ imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.

Results

Hypoxia induced PASMC proliferation with increases in basal [Ca2+]i and Ca2+ entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca2+]i, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.

Conclusion

The SOC/Ca2+/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.  相似文献   

5.
In platelets, STIM1 has been recognized as the key regulatory protein in store-operated Ca2+ entry (SOCE) with Orai1 as principal Ca2+ entry channel. Both proteins contribute to collagen-dependent arterial thrombosis in mice in vivo. It is unclear whether STIM2 is involved. A key platelet response relying on Ca2+ entry is the surface exposure of phosphatidylserine (PS), which accomplishes platelet procoagulant activity. We studied this response in mouse platelets deficient in STIM1, STIM2, or Orai1. Upon high shear flow of blood over collagen, Stim1−/− and Orai1−/− platelets had greatly impaired glycoprotein (GP) VI-dependent Ca2+ signals, and they were deficient in PS exposure and thrombus formation. In contrast, Stim2−/− platelets reacted normally. Upon blood flow in the presence of thrombin generation and coagulation, Ca2+ signals of Stim1−/− and Orai1−/− platelets were partly reduced, whereas the PS exposure and formation of fibrin-rich thrombi were normalized. Washed Stim1−/− and Orai1−/− platelets were deficient in GPVI-induced PS exposure and prothrombinase activity, but not when thrombin was present as co-agonist. Markedly, SKF96365, a blocker of (receptor-operated) Ca2+ entry, inhibited Ca2+ and procoagulant responses even in Stim1−/− and Orai1−/− platelets. These data show for the first time that: (i) STIM1 and Orai1 jointly contribute to GPVI-induced SOCE, procoagulant activity, and thrombus formation; (ii) a compensating Ca2+ entry pathway is effective in the additional presence of thrombin; (iii) platelets contain two mechanisms of Ca2+ entry and PS exposure, only one relying on STIM1-Orai1 interaction.  相似文献   

6.
In microvillar photoreceptors, light stimulates the phospholipase C cascade and triggers an elevation of cytosolic Ca2+ that is essential for the regulation of both visual excitation and sensory adaptation. In some organisms, influx through light-activated ion channels contributes to the Ca2+ increase. In contrast, in other species, such as Lima, Ca2+ is initially only released from an intracellular pool, as the light-sensitive conductance is negligibly permeable to calcium ions. As a consequence, coping with sustained stimulation poses a challenge, requiring an alternative pathway for further calcium mobilization. We observed that after bright or prolonged illumination, the receptor potential of Lima photoreceptors is followed by the gradual development of an after-depolarization that decays in 1–4 minutes. Under voltage clamp, a graded, slow inward current (Islow) can be reproducibly elicited by flashes that saturate the photocurrent, and can reach a peak amplitude in excess of 200 pA. Islow obtains after replacing extracellular Na+ with Li+, guanidinium, or N-methyl-d-glucamine, indicating that it does not reflect the activation of an electrogenic Na/Ca exchange mechanism. An increase in membrane conductance accompanies the slow current. Islow is impervious to anion replacements and can be measured with extracellular Ca2+ as the sole permeant species; Ba can substitute for Ca2+ but Mg2+ cannot. A persistent Ca2+ elevation parallels Islow, when no further internal release takes place. Thus, this slow current could contribute to sustained Ca2+ mobilization and the concomitant regulation of the phototransduction machinery. Although reminiscent of the classical store depletion–operated calcium influx described in other cells, Islow appears to diverge in some significant aspects, such as its large size and insensitivity to SKF96365 and lanthanum; therefore, it may reflect an alternative mechanism for prolonged increase of cytosolic calcium in photoreceptors.  相似文献   

7.
Bidirectional signaling between the sarcolemmal L-type Ca2+ channel (1,4-dihydropyridine receptor [DHPR]) and the sarcoplasmic reticulum (SR) Ca2+ release channel (type 1 ryanodine receptor [RYR1]) of skeletal muscle is essential for excitation–contraction coupling (ECC) and is a well-understood prototype of conformational coupling. Mutations in either channel alter coupling fidelity and with an added pharmacologic stimulus or stress can trigger malignant hyperthermia (MH). In this study, we measured the response of wild-type (WT), heterozygous (Het), or homozygous (Hom) RYR1-R163C knock-in mouse myotubes to maintained K+ depolarization. The new findings are: (a) For all three genotypes, Ca2+ transients decay during prolonged depolarization, and this decay is not a consequence of SR depletion or RYR1 inactivation. (b) The R163C mutation retards the decay rate with a rank order WT > Het > Hom. (c) The removal of external Ca2+ or the addition of Ca2+ entry blockers (nifedipine, SKF96365, and Ni2+) enhanced the rate of decay in all genotypes. (d) When Ca2+ entry is blocked, the decay rates are slower for Hom and Het than WT, indicating that the rate of inactivation of ECC is affected by the R163C mutation and is genotype dependent (WT > Het > Hom). (e) Reduced ECC inactivation in Het and Hom myotubes was shown directly using two identical K+ depolarizations separated by varying time intervals. These data suggest that conformational changes induced by the R163C MH mutation alter the retrograde signal that is sent from RYR1 to the DHPR, delaying the inactivation of the DHPR voltage sensor.  相似文献   

8.

Aims

Mechanogated ion channels are predicted to mediate pressure-induced myogenic vasoconstriction in small resistance arteries. Recent findings have indicated that transient receptor potential (TRP) channels and epithelial sodium channels (ENaC) are involved in mechanotransduction. The purpose of this study was to investigate the role of TRP channels and ENaC in the myogenic response. Our previous study suggested that ENaC could be a component of the mechanosensitive ion channels in rat posterior cerebral arteries (PCA). However, the specific ion channel proteins mediating myogenic constriction are unknown. Here we found, for the first time, that ENaC interacted with TRPM4 but not with TRPC6 using immunoprecipitation and confocal microscopy.

Methods and Results

Treatment with a specific βENaC inhibitor, amiloride, a specific TRPM4 inhibitor, 9-phenanthrol, and a TRPC6 inhibitor, SKF96365, resulted in inhibition of the pressure-induced myogenic response. Moreover, the myogenic response was inhibited in rat PCA transfected with small interfering RNA of βENaC, TRPM4, and TRPC6. Co-treatment with amiloride and 9-phenanthrol showed a similar inhibitory effect on myogenic contraction compared to single treatment with amiloride or 9-phenanthrol. The myogenic response was not affected by 9-phenanthrol or amiloride treatment in PCA transfected with βENaC or TRPM4 siRNA, respectively. However, pressure-induced myogenic response was fully inhibited by co-treatment with amiloride, 9-phenanthrol, and SKF96365, and by treatment with SKF96365 in PCA transfected with βENaC siRNA.

Conclusion

Our results suggest that ENaC, TRPM4, and TRPC6 play important roles in the pressure-induced myogenic response, and that ENaC and TRPM4 interact in rat PCA.  相似文献   

9.
Extracellular ATP triggers changes in intracellular Ca2+, ion channel function, and membrane trafficking in adipocytes. The aim of the present study was to determine which P2 receptors might mediate the Ca2+ signaling and membrane trafficking responses to ATP in brown fat cells. RT-PCR was used to determine which P2 receptors are expressed in brown fat cells. Responses to nucleotide agonists and antagonists were characterized using fura-2 fluorescence imaging of Ca2+ responses, and FM 1-43 fluorescence imaging and membrane capacitance measurements to assess membrane trafficking. The pharmacology of the Ca2+ responses fits the properties of the P2Y receptors for which mRNA is expressed, but the agonist and antagonist sensitivity of the membrane-trafficking response was not consistent with any P2 receptor described to date. Brown adipocytes expressed mRNA for P2Y2, P2Y6, and P2Y12 metabotropic receptors and P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 ionotropic receptors. The agonists ATP, ADP, UTP, UDP and 2′, 3′-(benzoylbenzoyl) ATP (BzATP) increased intracellular Ca2+, while 100 μM suramin, pyridoxal-phosphate-6-azophenyl-2′ 4′-disulfonic acid (PPADS), or Reactive Blue 2 partially blocked Ca2+ responses. ATP, but not ADP, UTP, UDP or BzATP activated membrane trafficking. The membrane response could be blocked completely with 1 μM PPADS but not by the antagonist MRS2179. We conclude that multiple P2 receptors mediate the ATP responses of brown fat cells, and that membrane trafficking is regulated by a P2 receptor showing unusual properties.  相似文献   

10.

Background

Ca2+ is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca2+ concentration ([Ca2+]c) in the prefusion phase, the occurrence and significance of Ca2+ signals in the postfusion phase have not been described before.

Methodology/Principal Findings

We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies) in an exceptionally slow, Ca2+- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca2+]c by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t1/2 of decay = 3.2 s) rise of localized [Ca2+]c originating at the site of lamellar body fusion. [Ca2+]c increase followed with a delay of ∼0.2–0.5 s (method-dependent) and in the majority of cases this signal propagated throughout the cell (at ∼10 µm/s). Removal of Ca2+ from, or addition of Ni2+ to the extracellular solution, strongly inhibited these [Ca2+]c transients, whereas Ca2+ store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca2+]c. Both effects were reduced by the non-specific Ca2+ channel blocker SKF96365.

Conclusions/Significance

Fusion-activated Ca2+ entry (FACE) is a new mechanism that leads to [Ca2+]c transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca2+ entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions.  相似文献   

11.

Background

ATP exerts diverse effects on various cell types via specific purinergic P2Y receptors. Intracellular signaling cascades are the main routes of communication between P2Y receptors and regulatory targets in the cell.

Methods and results

We examined the role of ATP in the modulation of ERK1/2, JNK1/2, and p38 MAP kinases (MAPKs) in human colon cancer Caco-2 cells. Immunoblot analysis showed that ATP induces the phosphorylation of MAPKs in a time- and dose-dependent manner, peaking at 5 min at 10 µM ATP. Moreover, ATPγS, UTP, and UDP but not ADP or ADPβS increased phosphorylation of MAPKs, indicating the involvement of, at least, P2Y2/P2Y4 and P2Y6 receptor subtypes. RT–PCR studies and PCR product sequencing supported the expression of P2Y2 and P2Y4 receptors in this cell line. Spectrofluorimetric measurements showed that cell stimulation with ATP induced transient elevations in intracellular calcium concentration. In addition, ATP-induced phosphorylation of MAPKs in Caco-2 cells was dependent on Src family tyrosine kinases, calcium influx, and intracellular Ca2+ release and was partially dependent on the cAMP/PKA and PKC pathways and the EGFR.

General significance

These findings provide new molecular basis for further understanding the mechanisms involved in ATP functions, as a signal transducer and activator of MAP kinase cascades, in colon adenocarcinoma Caco-2 cells.  相似文献   

12.
Extracellular signal-regulated kinase 1/2 (ERK1/2) is a member of the mitogen-activated protein kinase family. It can mediate cell migration. Classical dopamine receptor-mediated ERK1/2 phosphorylation is widely studied in neurons. Here, we report that ERK1/2 phosphorylation is also modulated by putative phosphatidylinositol-linked D1-like receptors in cultured rat astrocytes. 6-chloro-7,8-dihydroxy-3-methyl-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), an agonist of the putative phosphatidylinositol-linked D1-like receptors, was found to enhance ERK1/2 phosphorylation, which then promoted the migration of cultured astrocytes. The SKF83959-induced ERK1/2 phosphorylation was found to be Ca2+-independent based on the following observations: i. chelating intracellular Ca2+ did not inhibit ERK1/2 phosphorylation and astrocyte migration; ii. blockage of the release of intracellular Ca2+ from the endoplasmic reticulum by an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor did not attenuate ERK1/2 phosphorylation. However, inhibition of phospholipase C (PLC), the upstream molecule of internal Ca2+ release, disabled SKF83959’s ability to elevate the level of ERK1/2 phosphorylation. Both non-selective protein kinase C (PKC) inhibitor and PKCδ selective inhibitor prevented ERK1/2 phosphorylation increase and astrocyte migration, but PKCα inhibitor did not. This suggests that Ca2+-independent and diacylglycerol-dependent PKCδ acts downstream of putative phosphatidylinositol-linked D1-like receptor activation and mediates SKF83959-induced elevation of ERK1/2 phosphorylation in order to modulate astrocyte migration. In conclusion, our results demonstrate that SKF83959-induced increases in ERK1/2 phosphorylation and astrocyte migration are dependent on PLC-PKCδ signals. This might help us to further understand the functions of the putative phosphatidylinositol-linked D1-like receptors in the nervous system.  相似文献   

13.
Recent studies have demonstrated that urotensin-II (U-II) plays important roles in cardiovascular actions including cardiac positive inotropic effects and increasing cardiac output. However, the mechanisms underlying these effects of U-II in cardiomyocytes still remain unknown. We show by electrophysiological studies that U-II dose-dependently potentiates L-type Ca2+ currents (ICa,L) in adult rat ventricular myocytes. This effect was U-II receptor (U-IIR)-dependent and was associated with a depolarizing shift in the voltage dependence of inactivation. Intracellular application of guanosine-5′-O-(2-thiodiphosphate) and pertussis toxin pretreatment both abolished the stimulatory effects of U-II. Dialysis of cells with the QEHA peptide, but not scrambled peptide SKEE, blocked the U-II-induced response. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin as well as the class I PI3K antagonist CH132799 blocked the U-II-induced ICa,L response. Protein kinase C antagonists calphostin C and chelerythrine chloride as well as dialysis of cells with 1,2bis(2aminophenoxy)ethaneN,N,N′,N′-tetraacetic acid abolished the U-II-induced responses, whereas PKCα inhibition or PKA blockade had no effect. Exposure of ventricular myocytes to U-II markedly increased membrane PKCβ1 expression, whereas inhibition of PKCβ1 pharmacologically or by shRNA targeting abolished the U-II-induced ICa,L response. Functionally, we observed a significant increase in the amplitude of sarcomere shortening induced by U-II; blockade of U-IIR as well as PKCβ inhibition abolished this effect, whereas Bay K8644 mimicked the U-II response. Taken together, our results indicate that U-II potentiates ICa,L through the βγ subunits of Gi/o-protein and downstream activation of the class I PI3K-dependent PKCβ1 isoform. This occurred via the activation of U-IIR and contributes to the positive inotropic effect on cardiomyocytes.  相似文献   

14.
Microglia engage in the clearance of dead cells or dangerous debris. When neighboring cells are injured, the cells release or leak ATP into extracellular space and microglia rapidly move toward or extend a process to the nucleotides as chemotaxis through P2Y12 receptors. In the meanwhile, microglia express the metabotropic P2Y6 receptors, the activation of which by uridine 5′-diphosphate (UDP) triggers microglial phagocytosis in a concentration-dependent fashion. UDP/UTP was leaked when hippocampal neurons were damaged by kainic acid in vivo and in vitro. Systemic administration of kainic acid in rats resulted in neuronal cell death in the hippocampal CA1 and CA3 regions, where increases in mRNA for P2Y6 receptors in activated microglia. Thus, the P2Y6 receptor is upregulated when neurons are damaged, and would function as a sensor for phagocytosis by sensing diffusible UDP signals.Key Words: microglia, phagocytosis, P2Y6 receptors, UDPAccumulating findings indicate that nucleotides play an important role in neuron to glia communication through P2 purinoceptors, even though ATP is recognized primarily to be a source of free energy and nucleotides are key molecules in cells. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y) (Fig. 1). P2X receptors (seven types; P2X1-P2X7) contain intrinsic pores that open by binding with ATP. P2Y (eight types; P2Y1,2,4,6 and 11–14) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins.1 Microglia express P2X4, P2X7, P2Y2, P2Y6 and P2Y121 and are known as resident macrophages in CNS, accounting for 5–10% of the total population of glia.2,3 When neurons are injured or dead, microglia are activated, resulting in their interaction with immune cells, active migration to the site of injury, release of pro-inflammatory substances and the phagocytosis of damaged cells or debris. For such activation of microglial motilities, extracellular nucleotides have a central role. Extracellular ATP functions as a chemoattractant. Microglial chemotaxis by ATP via P2Y12 receptors was originally found by Honda et al.,4 and has recently been confirmed in vivo in P2Y12 receptor knockout animals.5 Neuronal injury results in the release or leakage of ATP that appears to be a “find-me” signal from damaged neurons to microglia to cause chemotaxis. In addition to microglial migration by ATP, another nucleotide, UDP, an endogenous agonist of the P2Y6 receptor, greatly activates the motility of microglia and orders microglia to engulf damaged neurons.6Open in a separate windowFigure 1P2 purinergic receptors (ATP receptors).Phagocytosis is a specialized form of endocytosis taking relatively large particles (> 1.0 µm) into vacuoles and has a central role in tissue remodeling, inflammation and the defense against infectious agents.7 Phagocytosis is initiated by the activation of cell-surface phagocytosis receptors, including Fc receptors, complement receptors, integrins, endotoxin receptors (CD18, CD14), mannose receptors and scavenger receptors8 which are activated by corresponding extracellular ligands called as “eat-me” signals. Since recognition is the most important step for phagocytosis, extensive studies on phagocytosis receptors have been reported. With regard to apoptotic cells, it is well known that dying cells express so called “eat-me” signals such as phosphatidylserine (PS) on their surface membrane,8 by which microglia recognize the apoptotic cells in order to catch and remove them.8 As for amyloid β protein (Aβ), a key molecule that mediates Alzheimer''s disease, microglia remove Aβ presumably via Fc receptor-dependent phagocytosis.9,10 It, however, is unclear how phagocytotic cells come to the target cells or debris. Our findings suggest that nucleotides might be the molecules to guide phagocytotic cells to the targets.We found that exogenously applied UDP caused microglial phagocytosis through P2Y6 in a concentration-dependent manner, and that neuronal injury caused by kainic acid (KA) upregulated P2Y6 receptors in microglia, the KA evoked neuronal injury resulted in an increase in extracellular UTP, which was immediately metabolized into UDP in vivo and in vitro. We also found that UDP leaked from injured neurons caused P2Y6 receptor-dependent phagocytosis in vivo and in vitro. Thus, UDP could be a diffusible molecule that signals the crisis of damaged neurons to microglia, triggering phagocytosis. Nucleotides seem to have the ability to act as “eat-us” signals for necrotic cells suffering traumatic or ischemic injury because such necrotic cells cause swelling, followed by shrinkage, leading to the leakage of cytoplasmic molecules including a large amount of ATP and UTP and extracellular nucleotides are immediately degraded by ecto-nucleotideases, suggesting that leaked nucleotides could be transient and localized signals that alert to the crisis created by the presence of the necrotic cells. These findings suggest that microglia might be attracted by ATP/ADP4,5,11,12 and subsequently recognize UDP, starting to recognize “eat-me” signals attached to the targets and engulf them (Fig. 2). It is interesting that ATP/ADP is not able to efficiently activate P2Y6 receptors, nor can UDP act on P2Y12 receptors. Thus, adenine and uridine nucleotides would regulate microglial motilities, i.e. chemotaxis and phagocytosis, in a coordinated fashion.Open in a separate windowFigure 2Illustration of nucleotide-activated microglial chemotaxix and phagocytosis. Activated microglia might be attracted by ATP/ADP is not able to efficiently activate P2Y6 receptors, nor ca UDP act on P2Y12 receptors.  相似文献   

15.
Dopamine (DA), a neurotransmitter in the nervous system, has been shown to modulate immune function. We have previously reported that five subtypes of DA receptors, including D1R, D2R, D3R, D4R and D5R, are expressed in T lymphocytes and they are involved in regulation of T cells. However, roles of these DA receptor subtypes and their coupled signal-transduction pathway in modulation of natural killer (NK) cells still remain to be clarified. The spleen of mice was harvested and NK cells were isolated and purified by negative selection using magnetic activated cell sorting. After NK cells were incubated with various drugs for 4 h, flow cytometry measured cytotoxicity of NK cells against YAC-1 lymphoma cells. NK cells expressed the five subtypes of DA receptors at mRNA and protein levels. Activation of D1-like receptors (including D1R and D5R) with agonist SKF38393 enhanced NK cell cytotoxicity, but activation of D2-like receptors (including D2R, D3R and D4R) with agonist quinpirole attenuated NK cells. Simultaneously, SKF38393 elevated D1R and D5R expression, cAMP content, and phosphorylated cAMP-response element-binding (CREB) level in NK cells, while quinpirole reduced D3R and D4R expression, cAMP content, and phosphorylated CREB level in NK cells. These effects of SKF38393 were blocked by SCH23390, an antagonist of D1-like receptors, and quinpirole effects were abolished by haloperidol, an antagonist of D2-like receptors. In support these results, H89, an inhibitor of phosphokinase A (PKA), prevented the SKF38393-dependent enhancement of NK cells and forskolin, an activator of adenylyl cyclase (AC), counteracted the quinpirole-dependent suppression of NK cells. These findings show that DA receptor subtypes are involved in modulation of NK cells and suggest that D1-like receptors facilitate NK cells by stimulating D1R/D5R-cAMP-PKA-CREB signaling pathway and D2-like receptors suppress NK cells by inhibiting D3R/D4R-cAMP-PKA-CREB signaling pathway. The results may provide more targets of therapeutic strategy for neuroimmune diseases.  相似文献   

16.
The equal potency and efficacy of the agonists, ATP and UTP, pharmacologically distinguish the P2Y2 receptor from other nucleotide receptors. Investigation of the desensitization of the P2Y2 receptors is complicated by the simultaneous expression of different P2 nucleotide receptor subtypes. The co-expression of multiple P2 receptor subtypes in mammalian cells may have led to contradictory reports on the efficacy of the natural agonists of the P2Y2 receptor to induce desensitization. We decided to investigate the desensitization of human and murine isoforms of the P2Y2 receptor, and to rigorously examine their signaling and desensitization properties. For these purposes, we used 1321N1 astrocytoma cells stably transfected with the human or murine P2Y2 receptor cDNA, as well as human A431 cells that endogenously express the receptor. The mobilization of intracellular calcium by extracellular nucleotides was used as a functional assay for the P2Y2 receptors. While ATP and UTP activated the murine and human P2Y2 receptors with similar potencies (EC50 values were 1.5-5.8 M), ATP was ~ 10-fold less potent (IC50 = 9.1-21.2 M) than UTP (IC50 = 0.7-2.9 M) inducing homologous receptor desensitization in the cell systems examined. Individual cell analyses of the rate and dose dependency of agonist-induced desensitization demonstrated that the murine receptor was slightly more resistant to desensitization than its human counterpart. To our knowledge, this is the first individual cell study that has compared the cellular heterogeneity of the desensitized states of recombinant and endogenously expressed receptors. This comparison demonstrated that the recombinant system conserved the cellular regulatory elements needed to attenuate receptor signaling by desensitization.  相似文献   

17.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

18.
The P2Y11 nucleotide receptor detects high extracellular ATP concentrations. Mutations of the human P2RY11 gene can play a role in brain autoimmune responses, and the P2Y11 receptor alanine‐87‐threonine (A87T) polymorphism has been suggested to affect immune‐system functions. We investigated receptor functionality of the P2Y11A87T mutant using HEK293 and 1321N1 astrocytoma cells. In HEK293 cells, the P2Y11 receptor agonist 3′‐O‐(4‐benzoylbenzoyl)adenosine 5′‐triphosphate (BzATP) was completely inactive in evoking intracellular calcium release while the potency of ATP was reduced. ATP was also less potent in triggering cAMP generation. However, 1321N1 astrocytoma cells, which lack any endogenous P2Y1 receptors, did not display a reduction. Only when 1321N1 cells were co‐transfected with P2Y11A87T and P2Y1 receptors, the calcium responses to the P2Y11 receptor‐specific agonist BzATP were reduced. It is already known that P2Y1 and P2Y11 receptors interact. We thus conclude that the physiological impact of A87T mutation of the P2Y11 receptor derives from detrimental effects on P2Y1–P2Y11 receptor interaction. We additionally investigated alanine‐87‐serine and alanine‐87‐tyrosine P2Y11 receptor mutants. Both mutations rescue the response to BzATP in HEK293 cells, thus ruling out polarity of amino acid‐87 to be the molecular basis for altered receptor characteristics. We further found that the P2Y11A87T receptor shows complete loss of nucleotide‐induced internalization in HEK293 cells. Thus, we demonstrate impaired signaling of the P2Y11 A87T‐mutated receptors when co‐operating with P2Y1 receptors.

  相似文献   


19.
The neuropeptide Y (NPY) Y1 receptor (Y1R) has been suggested as a tumor marker for in vivo imaging and as a therapeutic target. In view of the assumed link between estrogen receptor (ER) and Y1R in mammary carcinoma and with respect to the development of new diagnostic tools, we investigated the Y1R protein expression in human MCF-7 cell variants differing in ER content and sensitivity against antiestrogens. ER and Y1R expression were quantified by radioligand binding using [3H]-17β-estradiol and the Y1R selective antagonist [3H]-UR-MK114, respectively. The latter was used for cellular binding studies and for autoradiography of MCF-7 xenografts. The fluorescent ligands Cy5-pNPY (universal Y1R, Y2R and Y5R agonist) and UR-MK22 (selective Y1R antagonist), as well as the selective antagonists BIBP3226 (Y1R), BIIE0246 (Y2R) and CGP71683 (Y5R) were used to identify the NPY receptor subtype(s) by confocal microscopy. Y1R functionality was determined by mobilization of intracellular Ca2+. Sensitivity of MCF-7 cells against antiestrogen 4-hydroxytamoxifen correlated directly with the ER content. The exclusive expression of Y1Rs was confirmed by confocal microscopy. The Y1R protein was up-regulated (100%) by 17β-estradiol (EC50 20 pM) and the predominant role of ERα was demonstrated by using the ERα-selective agonist “propylpyrazole triol”. 17β-Estradiol-induced over-expression of functional Y1R protein was reverted by the antiestrogen fulvestrant (IC50 5 nM) in vitro. Furthermore, tamoxifen treatment of nude mice resulted in an almost total loss of Y1Rs in MCF-7 xenografts. In conclusion, the value of the Y1R as a target for therapy and imaging in breast cancer patients may be compromised due to Y1R down-regulation induced by hormonal (antiestrogen) treatment.  相似文献   

20.
The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS) respond to electric field stimulation (EFS) and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM) caused bronchoconstriction in human (4 from 7) and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC). However, this effect was notably smaller in human responder (30±7.1%) than in guinea pig (79±5.1%) PCLS. The transient receptor potential (TRP) channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号