首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The unique double fertilisation mechanism in flowering plants depends upon a pair of functional sperm cells. During male gametogenesis, each haploid microspore undergoes an asymmetric division to produce a large, non-germline vegetative cell and a single germ cell that divides once to produce the sperm cell pair. Despite the importance of sperm cells in plant reproduction, relatively little is known about the molecular mechanisms controlling germ cell proliferation and specification. Here, we investigate the role of the Arabidopsis male germline-specific Myb protein DUO POLLEN1, DUO1, as a positive regulator of male germline development. We show that DUO1 is required for correct male germ cell differentiation including the expression of key genes required for fertilisation. DUO1 is also necessary for male germ cell division, and we show that DUO1 is required for the germline expression of the G2/M regulator AtCycB1;1 and that AtCycB1:1 can partially rescue defective germ cell division in duo1. We further show that the male germline-restricted expression of DUO1 depends upon positive promoter elements and not upon a proposed repressor binding site. Thus, DUO1 is a key regulator in the production of functional sperm cells in flowering plants that has a novel integrative role linking gametic cell specification and cell cycle progression.  相似文献   

4.
The production of two functional sperm cells within each male gametophyte is essential for double fertilization in flowering plants and involves a single mitotic division of the male germ cell and cell specification to produce functional gametes. Several proteins that are important regulators of male germ cell division have been identified as well as the R2R3 MYB protein DUO1 that has a dual role in cell division and cell specification. We recently identified a novel regulatory protein DUO3, that has overlapping roles with DUO1 in cell division and specification and shows similarity to GON4 related cell lineage regulators in animals. DUO3 also has important roles outside the germline and is required for embryo patterning and meristem function. We outline the regulatory roles of DUO3 in male germline development and its possible mechanisms of action as a lineage regulator in current models that link germ cell cycle control and gamete specification.Key words: DUO3, male germline development, cell cycle, cell specification, Arabidopsis, pollen, GON4-LThe two sperm cells required for double fertilization in flowering plants are produced after an asymmetric division of the haploid microspore produces a large vegetative cell and a smaller germ cell, thereby establishing the male germline (reviewed in ref. 1; Fig. 1A). The germ cell is engulfed within the vegetative cell cytoplasm where it divides to produce the two sperm cells. The germ cell also goes through a process of specification, with ∼6,000 genes expressed in sperm cells,2 many of which show specific or enhanced expression in the male germline and/or are essential for fertilization.24 Since 2005 a number of proteins with important regulatory roles in either germ cell division59 or both germ cell division and specification1012 have been described, enabling the formulation of basic models for the regulation of male germline development.12,13 In our recent publication14 we identify a novel regulatory protein, DUO POLLEN3 (DUO3) that has essential roles in germ cell division and specification, as well as vital sporophytic functions. Here we present the role of DUO3 in an emerging model for the regulation of male germline development in Arabidopsis (Fig. 1B) and briefly discuss the wider role and possible mechanism of DUO3 function.Open in a separate windowFigure 1Overview of male gametophyte development in arabidopsis (a) and model of germ cell cycle progression and specification in the male germline (B). (A) Schematic of the distinct morphological stages of male gametophyte development in arabidopsis. Diploid pollen mother cells undergo meiotic division to produce a tetrad of haploid microspores. the released microspores undergo a highly asymmetric division to produce a bicellular pollen grain with a small germ cell engulfed within the cytoplasm of a large vegetative cell. Whilst the vegetative cell exits the cell cycle, the germ cell undergoes a further mitotic division to produce twin sperm cells. (B) a schematic model integrating the control of cell proliferation and sperm cell specification in male germline development of arabidopsis. after microspore division, the cell cycle inhibitors KrP6 and KrP7 are present in the newly formed germ cell. transient expression of FBL17 leads to the degradation of these KRPs, allowing CDKA/CYCD to phosphorylate RBR, thereby relieving RBR-mediated repression of the E2F/DP pathway and progression of the germ cell through S-phase. Gamete specification begins shortly after germ cell division, where the co-expression of DUO1 and DUO3 in the germ cell leads to the activation of common and distinct germline differentiation genes. Once S-phase is complete, the DuO1-dependent activation of the G2/m phase regulator CYCB1;1 promotes germ cell cycle progression and entry into mitosis. In parallel, DUO3 also controls G2/m transition, by an unknown mechanism that acts independently of cYcB1;1 expression. DUO1 and DUO3 therefore integrate germline differentiation with cell cycle progression. Ultimately, the cooperation of these parallel pathways results in a pair of fully differentiated sperm cells equipped with a complement of essential germline factors such as GcS1 that are required for successful gamete fusion.  相似文献   

5.
Li M  Shen Q  Xu H  Wong FM  Cui J  Li Z  Hong N  Wang L  Zhao H  Ma B  Hong Y 《PloS one》2011,6(1):e15910

Background

The genes boule and dazl are members of the DAZ (Deleted in Azoospermia) family encoding RNA binding proteins essential for germ cell development. Although dazl exhibits bisexual expression in mitotic and meiotic germ cells in diverse animals, boule shows unisexual meiotic expression in invertebrates and mammals but a bisexual mitotic and meiotic expression in medaka. How boule and dazl have evolved different expression patterns in diverse organisms has remained unknown.

Methodology and Principal Findings

Here we chose the fish rainbow trout (Oncorhynchus mykiss) as a second lower vertebrate model to investigate the expression of boule and dazl. By molecular cloning and sequence comparison, we identified cDNAs encoding the trout Boule and Dazl proteins, which have a conserved RNA-recognition motif and a maximal similarity to their homologs. By RT-PCR analysis, adult RNA expression of trout boule and dazl is restricted to the gonads of both sexes. By chromogenic and two-color fluorescence in situ hybridization, we revealed bisexual and germline-specific expression of boule and dazl. We found that dazl displays conserved expression throughout gametogenesis and concentrates in the Balbinani''s body of early oocytes and the chromatoid body of sperm. Surprisingly, boule exhibits mitotic and meiotic expression in the male but meiosis-specific expression in the female.

Conclusions

Our data underscores differential conservation and divergence of DAZ family genes during vertebrate evolution. We propose a model in which the diversity of boule expression in sex and stage specificity might have resulted from selective loss or gain of its expression in one sex and mitotic germ cells.  相似文献   

6.
7.
8.
During mouse embryonic development germ cells proliferate extensively until they commit to the male or female pathway and arrest in mitosis or meiosis respectively. Whilst the transition of female germ cells exiting the mitotic cell cycle and entering meiosis is well defined histologically, the essential cell cycle proteins involved in this process have remained unresolved. Using flow cytometry we have examined the entry of female germ cells into meiosis, their termination of DNA synthesis and entry into prophase I. Analysis of key G2/M cell cycle proteins revealed that entry into meiosis and cell cycle exit at G2/M involves repression of G2/M promoting Cyclin B1, coincident upregulation of G2/M repressing Cyclin B3 and robust establishment of the ATM/CHK2 pathway. By contrast we show that the ATR/CHK1 pathway is activated in male and female germ cells. This data indicates that an important G2/M surveillance mechanism operates during germ cell proliferation and that passage into meiotic G2/M involves the combined repression of G2/M through Cyclin B3 and activation of the key G2/M checkpoint regulatory network modulated through ATM and CHK2. This work shows that the core regulatory machinery that controls G2/M progression in mitotic cells is activated in female mouse germ cells as they enter meiosis.  相似文献   

9.
Fertility genes boule and dazl constitute the evolutionarily conserved DAZ (Deleted in AZoospermia) family of RNA binding proteins essential for germline development across animal phyla. Here we report the cloning and expression analysis of boule and dazl from the Asian seabass (Lates calcarifer), a marine fish that undergoes sequential male-to-female sex reversal. Molecular cloning and sequence comparison led to the identification of boule and dazl cDNAs. RT-PCR analysis showed that both boule and dazl RNAs were restricted to the gonads among adult organs examined. Chromogenic in situ hybridization revealed germ cell-specific expression for both boule and dazl in female and male adults. Importantly, distinct differences were found between boule and dazl in terms of temporospatial expression and subcellular distribution. The boule RNA was abundant in late gametogenic cells except sperm. Interestingly, dazl expression increases in early oocytes and concentrates in a perinuclear speckle that appears to develop ultimately into the Balbiani body in advanced oocytes. The dazl RNA was found to be abundant in spermatocytes but hardly detectable in sperm. These data demonstrate that boule and dazl are germ cell markers in the adult Asian seabass, and that bisexual germline-specific expression has been conserved for boule and dazl in fish.  相似文献   

10.
Asymmetric cell division is a universal strategy to generate diverse cell types necessary for patterning and proliferation of all eukaryotes. The development of haploid male gametophytes (pollen grains) in flowering plants is a remarkable example in which division asymmetry governs the functional specialization and germline differentiation essential for double fertilization. The male gametophyte is patterned via two mitotic divisions resulting in three highly differentiated daughter cells at maturity, a vegetative cell and two sperm cells. The first asymmetric division segregates a unique male germ cell from an undetermined haploid microspore and is executed in an elaborate sequence of cellular events. However the molecular mechanisms governing the division asymmetry in microspores are poorly understood. Recently we studied the phenotype of sidecar pollen (scp) mutants in detail, and demonstrated a requirement of SCP for both the correct timing and orientation of microspore division. SCP is a microspore-specific member of the LOB/AS2 domain family (LBD27/ASL29) showing that a plant-specific regulator plays a key role in oriented division of polarized microspores. Identification of SCP will serve as a new platform to further explore the largely unknown molecular networks regulating division asymmetry in microspores that establishes the male germline in flowering plants.Key words: sidecar pollen, microspore division, division asymmetry, male gametophyte development, male germline, LBD/ASL family proteinUnlike animals, flowering plants do not set aside a distinct germline from an early stage of the life cycle. Instead the angiosperm germline or germ cells are only segregated in the male and female gametophytes by a limited number of post-meiotic mitoses.1 However, in common with their metazoan cousins, angiosperms utilize division asymmetry for cellular patterning and differentiation of their germlines. Through the unique patterning of a ‘cell-within-a-cell’ structure with three highly differentiated cells, the male gametophyte (pollen grains) serves its biological role to deliver two sessile male gametes to the female gametophyte. Two sequential but different modes of mitotic divisions pattern the male gametophyte (Fig. 1).2 The first division (of the microspore) is asymmetric giving rise to two completely different daughter cells, a larger vegetative cell that will form the pollen tube and a smaller germ cell that is engulfed within the vegetative cell cytoplasm. The second division (of the germ cell) usually appears symmetric and produces a pair of linked sperm cells. Microspores artificially induced to undergo symmetric division using microtubule inhibitors lack the germ cell and fail to form the typical three-celled structure showing that asymmetry in microspore division is critical for patterning of the male gametophyte.4Open in a separate windowFigure 1Male gametophyte development in Arabidopsis (upper part) and mutations that block germ cell formation (lower part). (Upper part) Male gametophyte development involves two rounds of mitotic division. Prior to the first division the centrally positioned microspore nucleus migrates towards the radial wall (the future germ cell pole marked with an asterisk). At this eccentric site the polarized microspores undergo oriented mitosis and cytokinesis giving rise to highly unequal daughter cells, a vegetative cell and a germ cell of which the later produces a pair of sperm cells by symmetric division. (Lower part) Mutants that fail to establish a distinct germ cell arising from specific defects are illustrated. Arrows in red indicate the developmental origin of the phenotypic defects in mutants. Note that two daughter nuclei in the mutants are in grey to show that their cell fates have not yet been thoroughly investigated. n, nucleus; Vn, vegetative nucleus; Gn, generative nucleus; Gc, generative (or germ) cell; Sc, sperm cell; WT, wild type; gem1, gemini pollen1; scp, sidecar pollen; tio, two-in-one; hik/tes, hinkel/tetraspore 12a/12b, kinesin-12a/kinesin-12b.  相似文献   

11.
12.
The Deleted in Azoospermia (DAZ) gene family encodes putative translational activators that are required for meiosis and other aspects of gametogenesis in animals. The single Caenorhabditis elegans homologue of DAZ, daz-1, is an essential factor for female meiosis. Here, we show that daz-1 is important for the switch from spermatogenesis to oogenesis (the sperm/oocyte switch), which is an essential step for the hermaphrodite germline to produce oocytes. RNA interference of the daz-1 orthologue in a related nematode, Caenorhabditis briggsae, resulted in a complete loss of the sperm/oocyte switch. The C. elegans hermaphrodite deficient in daz-1 also revealed a failure in the sperm/oocyte switch if the genetic background was conditional masculinization of germline. DAZ-1 could bind specifically to mRNAs encoding the FBF proteins, which are translational regulators for the sperm/oocyte switch and germ stem cell proliferation. Expression of the FBF proteins seemed to be lowered in the daz-1 mutant at the stage for the sperm/oocyte switch. Conversely, a mutation in gld-3, a gene that functionally counteracts FBF, could partially restore oogenesis in the daz-1 mutant. Together, we propose that daz-1 plays a role upstream of the pathway for germ cell sex determination.  相似文献   

13.
14.
The deleted in azoospermia (DAZ) family genes encode potential RNA-binding proteins that are expressed exclusively in germ cells in a wide range of metazoans. We have previously shown that mutations in daz-1, the only DAZ family gene in Caenorhabditis elegans, cause pachytene stage arrest of female germ cells but do not affect spermatogenesis. In this study, we report that DAZ-1 protein is most abundantly expressed in proliferating female germ cells, in a manner independent of the GLP-1 signaling pathway. DAZ-1 is dispensable in males but it is expressed also in male mitotic germ cells. Detailed phenotypic analyses with fluorescence microscopy and transmission electron microscopy have revealed that loss of daz-1 function causes multiple abnormalities as early as the onset of meiotic prophase, which include aberrant chromatin structure, small nucleoli, absence of the cytoplasmic core, and precocious cellularization. Although the reduced size of nucleoli is indicative of a low translational activity in these cells, artificial repression of general translation in the germline does not phenocopy the daz-1 mutant. Thus, we propose that DAZ-1 in C. elegans plays essential roles in female premeiotic and early meiotic germ cells, probably via regulating the translational activity of specific target genes required for the progression of oogenesis.  相似文献   

15.
Maintenance of mitotically cycling germline stem cells (GSCs) is vital for continuous production of gametes. In worms and insects, signaling from surrounding somatic cells play an essential role in the maintenance of GSCs by preventing premature differentiation. In addition, germ cell proteins such as the Drosophila Pumilio and Caenorhabditis elegans FBF, both members of the PUF family translational regulators, contribute to GSC maintenance. FBF functions by suppressing GLD-1, which promotes meiotic entry. However, factors that directly promote GSC proliferation, rather than prevent differentiation, are not known. Here we show that PUF-8, another C. elegans member of the PUF family and MEX-3, a KH domain translational regulator, function redundantly to promote GSC mitosis. We find that PUF-8 protein is highly enriched in mitotic germ cells, which is similar to the expression pattern of MEX-3 described earlier. The puf-8(−) mex-3(−) double mutant gonads contain far fewer germ cells than both single mutants and wild-type. While these cells lack mitotic, meiotic and sperm markers, they retain the germ cell-specific P granules, and are capable of gametogenesis if GLP-1, which normally blocks meiotic entry, is removed. Significantly, we find that at least one of these two proteins is essential for germ cell proliferation even in meiotic entry-defective mutants, which otherwise produce germ cell tumors. We conclude PUF-8 and MEX-3 contribute to GSC maintenance by promoting mitotic proliferation rather than by blocking meiotic entry.  相似文献   

16.
Recent experimental studies on the regulatory mechanism of cell division in the regenerating rat liver have suggested that α1acid glycoprotein is a primary mitotic inhibitor, whose intracellular concentration over a critical level inhibits cell division, while α1-antitrypsin is one of secondary mitotic inhibitors, whose extracellular concentration below a critical level facilitates the excretion of the primary mitotic inhibitor from the hepatocyte, allowing cell division. Based on these findings, the essential part of the mitotic control mechanism in the regenerating rat liver is concretely discussed.To expand the basic concept to more general biological phenomena, the cell-specific mitosis-inhibiting protein excretion hypothesis is proposed. The hypothesis depends on two basic presuppositions: (1) Every cell has a cell-specific mitosis-inhibiting protein synthesized by the cell itself. (2) Every cell will be released from the suppression of cell division when the cell-specific mitosis-inhibiting protein has been excreted and the intracellular concentration of the protein has fallen below a critical level.On the basis of this hypothesis, the mitotic control mechanism in normal eukaryotic cells is briefly discussed on the level of the interrelation between cell division and cell differentiation, and the core of the puzzle of carcinogenesis, the problem of the so-called indefinite or autonomous proliferation of the cancer cell in the host, is also discussed.  相似文献   

17.
18.
Germ cell development is complex; it encompasses specification of germ cell fate, mitotic replication of early germ cell populations, and meiotic and postmeiotic development. Meiosis alone may require several hundred genes, including homologs of the BOULE (BOL) and PUMILIO (PUM) gene families. Both BOL and PUM homologs encode germ cell specific RNA binding proteins in diverse organisms where they are required for germ cell development. Here, we demonstrate that human BOL forms homodimers and is able to interact with a PUMILIO homolog, PUM2. We mapped the domain of BOL that is required for dimerization and for interaction with PUM2. We also show that BOL and PUM2 can form a complex on a subset of PUM2 RNA targets that is distinct from targets bound by PUM2 and another deleted in azoospermia (DAZ) family member, DAZ-like (DAZL). This suggests that RNA sequences bound by PUM2 may be determined by protein interactions. This data also suggests that although the BOL, DAZ, and DAZL proteins are all members of the same gene family, they may function in distinct molecular complexes during human germ cell development.  相似文献   

19.
20.

Background

During zebrafish embryogenesis, microRNA (miRNA) miR-430 contributes to restrict Nanos1 and TDRD7 to primordial germ cells (PGCs) by inducing mRNA deadenylation, mRNA degradation, and translational repression of nanos1 and tdrd7 mRNAs in somatic cells. The nanos1 and tdrd7 3′UTRs include cis-acting elements that allow activity in PGCs even in the presence of miRNA-mediated repression.

Methodology/Principal Findings

Using a GFP reporter mRNA that was fused with tdrd7 3′UTR, we show that a germline-specific RNA-binding protein DAZ-like (DAZL) can relieve the miR-430-mediated repression of tdrd7 mRNA by inducing poly(A) tail elongation (polyadenylation) in zebrafish. We also show that DAZL enhances protein synthesis via the 3′UTR of dazl mRNA, another germline mRNA targeted by miR-430.

Conclusions/Significance

Our present study indicated that DAZL acts as an “anti-miRNA factor” during vertebrate germ cell development. Our data also suggested that miRNA-mediated regulation can be modulated on specific target mRNAs through the poly(A) tail control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号