首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), is a vector of the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso), the putative causal agent of zebra chip disease of potato. Little is known about how potato psyllid transmits Lso to potato. We used electrical penetration graph (EPG) technology to compare stylet probing behaviors and efficiency of Lso transmission of three haplotypes of potato psyllid (Central, Western, Northwestern). All haplotypes exhibited the full suite of stylet behaviors identified in previous studies with this psyllid, including intercellular penetration and secretion of the stylet pathway, xylem ingestion, and phloem activities, the latter comprising salivation and ingestion. The three haplotypes exhibited similar frequency and duration of probing behaviors, with the exception of salivation into phloem, which was of higher duration by psyllids of the Western haplotype. We manipulated how long psyllids were allowed access to potato (“inoculation access period”, or IAP) to examine the relationship between phloem activities and Lso transmission. Between 25 and 30% of psyllids reached and salivated into phloem at an IAP of 1 hr, increasing to almost 80% of psyllids as IAP was increased to 24 h. Probability of Lso-transmission was lower across all IAP levels than probability of phloem salivation, indicating that a percentage of infected psyllids which salivated into the phloem failed to transmit Lso. Logistic regression showed that probability of transmission increased as a function of time spent salivating into the phloem; transmission occurred as quickly as 5 min following onset of salivation. A small percentage of infected psyllids showed extremely long salivation events but nonetheless failed to transmit Lso, for unknown reasons. Information from these studies increases our understanding of Lso transmission by potato psyllid, and demonstrates the value of EPG technology in exploring questions of vector efficiency.  相似文献   

4.
5.
Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, “Candidatus Liberibacter asiaticus,” and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of “Ca. Liberibacter asiaticus” in field populations of D. citri with experiments using field-collected insects to address how “Ca. Liberibacter asiaticus” infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from “Ca. Liberibacter asiaticus”-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were “Ca. Liberibacter asiaticus” positive. The infections were systemic across head-thorax and abdomen, ranging from 103 to 107 bacteria per insect. In spring, the infection densities were low in March, at ∼103 bacteria per insect, increasing up to 106 to 107 bacteria per insect in April and May, and decreasing to 105 to 106 bacteria per insect in late May, whereas the infection densities were constantly ∼106 to 107 bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with “Ca. Liberibacter asiaticus” infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected “Ca. Liberibacter asiaticus”-infected insects suggested that (i) “Ca. Liberibacter asiaticus”-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼106 bacteria per insect) of “Ca. Liberibacter asiaticus” density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits “Ca. Liberibacter asiaticus” to citrus plants in a stochastic manner. These findings provide valuable insights into understanding, predicting, and controlling this notorious citrus pathogen.  相似文献   

6.
Candidatus Liberibacter asiaticus” (CaLas) is associated with citrus Huanglongbing (HLB, yellow shoot disease), which is highly destructive to world citrus production. Understanding the relationships of CaLas isolates from different geographical regions is important for HLB research and development of disease management strategies. In this study, 301 CaLas isolates [85 Brazil, 132 China, and 84 U.S. (83 Florida and 1 California)] were collected, and genomic variations among them were evaluated based on the analyses of two genomic loci: trn1, characteristic of variable tandem repeat numbers (TRNs), and snp1, characteristic of single nucleotide polymorphisms (SNPs). Locus trn1 revealed the homogeneity of all Brazilian isolates, and locus snp1 revealed the homogeneity of most Florida isolates. When the two loci were analyzed simultaneously, i.e., double-locus (DL) analyses, CaLas isolates were clustered mostly according to geographical origins. DL genotype 1 included 97 % of the Chinese isolates, DL genotype 2 included all Brazilian isolates, and DL genotype 3 included 93 % of the U.S. isolates. DL analyses successfully revealed inter-continental overlapping or movement pattern of CaLas isolates. The isolate recently found in California belonged to Asiatic DL genotype 1.  相似文献   

7.
Huanglongbing (yellow dragon disease) is a destructive disease of citrus. The etiological agent is a noncultured, phloem-restricted alpha-proteobacterium, “Candidatus Liberibacter africanus” in Africa and “Candidatus Liberibacter asiaticus” in Asia. In this study, we used an omp-based PCR-restriction fragment length polymorphism (RFLP) approach to analyze the genetic variability of “Ca. Liberibacter asiaticus” isolates. By using five different enzymes, each the 10 isolates tested could be associated with a specific combination of restriction profiles. The results indicate that the species “Ca. Liberibacter asiaticus,” even within a given region, may comprise several different variants. Thus, omp-based PCR-RFLP analysis is a simple method for detecting and differentiating “Ca. Liberibacter asiaticus” isolates.  相似文献   

8.
ATP/ADP translocases transport ATP across a lipid bilayer, which is normally impermeable to this molecule due to its size and charge. These transport proteins appear to be unique to mitochondria, plant plastids, and obligate intracellular bacteria. All bacterial ATP/ADP translocases characterized thus far have been found in endosymbionts of protozoa or pathogens of higher-order animals, including humans. A putative ATP/ADP translocase was uncovered during the genomic sequencing of the intracellular plant pathogen “Candidatus Liberibacter asiaticus,” the causal agent of citrus huanglongbing. Bioinformatic analysis of the protein revealed 12 transmembrane helices and predicted an isoelectric point of 9.4, both of which are characteristic of this family of proteins. The “Ca. Liberibacter asiaticus” gene (nttA) encoding the translocase was subsequently expressed in Escherichia coli and shown to enable E. coli to import ATP directly into the cell. Competition assays with the heterologous E. coli system demonstrated that the translocase was highly specific for ATP and ADP but that other nucleotides, if present in high concentrations, could also be taken up and/or block the ability of the translocase to import ATP. In addition, a protein homologous to NttA was identified in “Ca. Liberibacter solanacearum,” the bacterium associated with potato zebra chip disease. This is the first reported characterization of an ATP translocase from “Ca. Liberibacter asiaticus,” indicating that some intracellular bacteria of plants also have the potential to import ATP directly from their environment.Citrus huanglongbing (HLB), also known as citrus greening, is a disease of citrus that was first reported in China in the early 20th century (33) and identified in the United States in August 2005 in South Florida (22). As it spread rapidly across Florida, HLB has caused substantial economic losses to the citrus industry, and now other citrus-producing states may be in danger as well. The effects of this disease range from mild to severe and include symptoms such as yellow shoots, blotchy mottles on leaves, vein yellowing and corking, lopsided fruit with aborted seeds, early fruit dropping, and limb dieback, which can ultimately lead to the total loss of the infected tree. The disease has been associated with three species of bacteria known as “Candidatus Liberibacter” species. Each of the three “Ca. Liberibacter” species was discovered and named based on its presumptive origin, with “Ca. Liberibacter asiaticus” being found in Asia, “Ca. Liberibacter africanus” in Africa (13), and “Ca. Liberibacter americanus” in South America (24). A fourth species, known as “Ca. Liberibacter solanacearum,” is genetically related, although it is not naturally associated with HLB in citrus plants (16). “Ca. Liberibacter solanacearum” is associated with the emerging zebra chip disease of potatoes and tomatoes (15). “Ca. Liberibacter” species are Gram-negative, fastidious alphaproteobacteria (13) that reside in the sieve tube elements of infected plants (23). The same bacteria found in citrus plants have also been found in two phloem-feeding insects, the Asian citrus psyllid (Diaphorina citri) and the African citrus psyllid (Trioza erytreae), which act as vectors for the disease (for recent reviews, see references 3 and 9). Since insects that carry the pathogen do not have a shortened life span or other adverse effects (12), “Ca. Liberibacter” is thought to act more as an endosymbiont than as a pathogen in insects. There is no known cure for HLB, and current management strategies include elimination of infected trees and methods aimed at vector control. Because of the rapid spread and devastating consequences of infection with “Ca. Liberibacter,” understanding this obligate intracellular pathogen will be critical for the survival of the citrus industry.Recently, the complete genome sequence of “Ca. Liberibacter asiaticus” was obtained via metagenomics (5). Within this “Ca. Liberibacter asiaticus” genome, an open reading frame encoding a putative ATP/ADP translocase was found. Translocases are enzymes that aid in the transport of molecules, in this case adenosine phosphate, across a cell membrane. These adenylate transporters can be placed into one of three groups based upon where they reside. The first group was discovered in mitochondria and is involved in transporting the ATP synthesized in the mitochondrial matrix to the cytosol of the cell (28). The second type of transporter is found in plant plastids (19, 21, 31). In contrast to the mitochondrial transporters, which transport ATP to the cytosol, this set of transporters import ATP from the cytosol. Their function is to provide the stroma with a supply of cytosolic ATP in order to facilitate many of the anabolic reactions that take place there. The third set of transporters was originally discovered in the obligate intracellular bacterium Rickettsia prowazekii (30). Similar to their plastid counterparts, these transporters import ATP from the host cell''s cytosol and translocate it into the bacterial cell. Bacteria that posses this enzyme can act as “energy parasites” and import ATP directly from their hosts.Since its discovery in Rickettsia, the ATP/ADP translocase has been identified in other obligate intracellular parasites of animals, such as Chlamydia psittaci and Lawsonia intracellularis (11, 20), in addition to some protist endosymbionts, such as Caedibacter caryophilus and “Protochlamydia amoebophila” (4, 10). Analyses of the translocase proteins in these bacteria have demonstrated that certain translocase homologs can be used by the cell to import nucleotides other than ATP (2, 4, 10, 26), and thus, the family of proteins has come to be known more generally as nucleotide transporters. In spite of all of the previous research in this area, an ATP/ADP translocase from a bacterial plant pathogen has yet to be characterized. Here, we present the first characterization of a nucleotide transport protein (NttA) from the obligate intracellular plant pathogen “Ca. Liberibacter asiaticus.”  相似文献   

9.
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. ‘Candidatus Liberibacter asiaticus’ (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.  相似文献   

10.
Candidatus Liberibacter asiaticus” (CLas) is an uncultureable α-proteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease), a highly destructive disease affecting citrus production worldwide. HLB was observed in Guangdong Province of China over a hundred years ago and remains endemic there. Little is known about CLas biology due to its uncultureable nature. This study began with the genome sequence analysis of CLas Strain A4 from Guangdong in the prophage region. Within the two currently known prophage types, Type 1 (SC1-like) and Type 2 (SC2-like), A4 genome contained only a Type 2 prophage, CGdP2, namely. An analysis on CLas strains collected in Guangdong showed that Type 2 prophage dominated the bacterial population (82.6%, 71/86). An extended survey covering five provinces in southern China also revealed the predominance of single prophage (Type 1 or Type 2) in the CLas population (90.4%, 169/187). CLas strains with two and no prophage types accounted for 7.2% and 2.8%, respectively. In silico analyses on CGdP2 identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system, consisting of four 22 bp repeats, three 23 bp spacers and 9 predicted cas. Similar CRISPR/cas systems were detected in all 10 published CLas prophages as well as 13 CLas field strains in southern China. Both Type 1 and Type 2 prophages shared almost identical sequences in spacer 1 and 3 but not spacer 2. Considering that the function of a CRISPR/cas system was to destroy invading DNA, it was hypothesized that a pre-established CLas prophage could use its CRISPR/cas system guided by spacer 1 and/or 3 to defeat the invasion of the other phage/prophage. This hypothesis explained the predominance of single prophage type in the CLas population in southern China. This is the first report of CRISPR/cas system in the “Ca. Liberibacter” genera.  相似文献   

11.
Citrus greening (huanglongbing) is the most destructive citrus disease worldwide. The disease is associated with three species of ‘Candidatus Liberibacter’ among which ‘Ca. Liberibacter asiaticus’ has the widest distribution. ‘Ca. L. asiaticus’ is commonly transmitted by a phloem-feeding insect vector, the Asian citrus psyllid Diaphorina citri. A previous study showed that isolates of ‘Ca. L. asiaticus’ were clearly differentiated by variable number of tandem repeat (VNTR) profiles at four loci in the genome. In this study, the VNTR analysis was further validated by assessing the stability of these repeats after multiplication of the pathogen upon host-to-host transmission using a ‘Ca. L. asiaticus’ strain from Japan. The results showed that some tandem repeats showed detectable changes after insect transmission. To our knowledge, this is the first report to demonstrate that the repeat numbers VNTR 002 and 077 of ‘Ca. L. asiaticus’ change through psyllid transmission. VNTRs in the recipient plant were apparently unrelated to the growing phase of the vector. In contrast, changes in the number of tandem repeats increased with longer acquisition and inoculation access periods, whereas changes were not observed through psyllid transmission after relatively short acquisition and inoculation access periods, up to 20 and 19 days, respectively.  相似文献   

12.
Koh EJ  Zhou L  Williams DS  Park J  Ding N  Duan YP  Kang BH 《Protoplasma》2012,249(3):687-697
Huanglongbing (HLB) is a destructive disease of citrus trees caused by phloem-limited bacteria, Candidatus Liberibacter spp. One of the early microscopic manifestations of HLB is excessive starch accumulation in leaf chloroplasts. We hypothesize that the causative bacteria in the phloem may intervene photoassimilate export, causing the starch to over-accumulate. We examined citrus leaf phloem cells by microscopy methods to characterize plant responses to Liberibacter infection and the contribution of these responses to the pathogenicity of HLB. Plasmodesmata pore units (PPUs) connecting companion cells and sieve elements were stained with a callose-specific dye in the Liberibacter-infected leaf phloem cells; callose accumulated around PPUs before starch began to accumulate in the chloroplasts. When examined by transmission electron microscopy, PPUs with abnormally large callose deposits were more abundant in the Liberibacter-infected samples than in the uninfected samples. We demonstrated an impairment of symplastic dye movement into the vascular tissue and delayed photoassimilate export in the Liberibacter-infected leaves. Liberibacter infection was also linked to callose deposition in the sieve plates, which effectively reduced the sizes of sieve pores. Our results indicate that Liberibacter infection is accompanied by callose deposition in PPUs and sieve pores of the sieve tubes and suggest that the phloem plugging by callose inhibits phloem transport, contributing to the development of HLB symptoms.  相似文献   

13.
Citrus greening (Huanglongbing, HLB) is one of the most destructive diseases of citrus worldwide. In South Asia HLB has been known for more than a century, while in Americas the disease was found relatively recently. HLB is associated with three species of ‘Candidatus Liberibacter’ among which ‘Ca. Liberibacter asiaticus’ (CLas) has most wide distribution. Recently, a number of studies identified different regions in the CLas genome with variable number of tandem repeats (VNTRs) that could be used for examination of CLas diversity. One of the objectives of the work presented here was to further validate the VNTR analysis-based approach by assessing the stability of these repeats upon multiplication of the pathogen in a host over an extended period of time and upon its passaging from a host to a host using CLas populations from Florida. Our results showed that the numbers of tandem repeats in the four loci tested display very distinguishable “signature profiles” for the two Florida-type CLas haplotype groups. Remarkably, the profiles do not change upon passage of the pathogen in citrus and psyllid hosts as well as after its presence within a host over a period of five years, suggesting that VNTR analysis-based approach represents a valid methodology for examination of the pathogen populations in various geographical regions. Interestingly, an extended analysis of CLas populations in different locations throughout Florida and in several countries in the Caribbean and Central America regions and in Mexico where the pathogen has been introduced recently demonstrated the dispersion of the same haplotypes of CLas. On the other hand, these CLas populations appeared to differ significantly from those obtained from locations where the disease has been present for a much longer time.  相似文献   

14.
15.
16.
17.
Citrus huanglongbing (HLB), associated with the unculturable phloem-limited bacterium “Candidatus Liberibacter asiaticus” (CLas), is the most devastating disease in the citrus industry worldwide. However, the pathogenicity of CLas remains poorly understood. In this study, we show that AGH17488, a secreted protein encoded by the prophage region of the CLas genome, suppresses plant immunity via targeting the host ASCORBATE PEROXIDASE6 (APX6) protein in Nicotiana benthamiana and Citrus sinensis. The transient expression of AGH17488 reduced the chloroplast localization of APX6 and its enzyme activity, inhibited the accumulation of reactive oxygen species (H2O2 and O2) and the lipid oxidation endproduct malondialdehyde in plants, and promoted the proliferation of Pseudomonas syringae pv. tomato DC3000 and Xanthomonas citri subsp. citri. This study reveals a novel mechanism underlying how CLas uses a prophage-encoded effector, AGH17488, to target a reactive oxygen species accumulation-related gene, APX6, in the host to facilitate its infection.  相似文献   

18.
‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease, is transmitted by Diaphorina citri, the Asian citrus psyllid. Interactions among D. citri and its microbial endosymbionts, including ‘Candidatus Profftella armatura’, are likely to impact transmission of CLas. We used quantitative mass spectrometry to compare the proteomes of CLas(+) and CLas(-) populations of D. citri, and found that proteins involved in polyketide biosynthesis by the endosymbiont Profftella were up-regulated in CLas(+) insects. Mass spectrometry analysis of the Profftella polyketide diaphorin in D. citri metabolite extracts revealed the presence of a novel diaphorin-related polyketide and the ratio of these two polyketides was changed in CLas(+) insects. Insect proteins differentially expressed between CLas(+) and CLas(-) D. citri included defense and immunity proteins, proteins involved in energy storage and utilization, and proteins involved in endocytosis, cellular adhesion, and cytoskeletal remodeling which are associated with microbial invasion of host cells. Insight into the metabolic interdependence between the insect vector, its endosymbionts, and the citrus greening pathogen reveals novel opportunities for control of this disease, which is currently having a devastating impact on citrus production worldwide.  相似文献   

19.
In July 2017, a survey was conducted in a fig collection plot at Locorotondo (south of Italy) to investigate the possible presence of phytoplasmas in plants showing yellowing, deformed leaves, short internodes, mottling and mosaic. Samples were collected from symptomatic plants and tested by nested PCR assays using universal and specific primers to amplify the 16S rDNA of these prokaryotes. PCR results detected the presence of phytoplasma sequences in twenty plant samples that resulted clustering two phylogenetically distinct phytoplasmas, i.e., “Candidatus Phytoplasma asteris” and “Candidatus Phytoplasma solani” affiliated to 16SrI and 16SrXII ribosomal groups, respectively. The presence of phytoplasmas belonging to both ribosomal groups was confirmed with group specific quantitative PCR and RFLP assays on 16S ribosomal amplicons. Results of this study indicate for the first time the occurrence of phytoplasmas in fig; however, more work should be carried out to verify their association with the symptoms observed on diseased fig plants.  相似文献   

20.
Studies on the ecology of microbial parasites and their hosts are predicated on understanding the assemblage of and relationship among the species present. Changes in organismal morphology and physiology can have profound effects on host–parasite interactions and associated microbial community structure. The marine rickettsial organism, “Candidatus Xenohaliotis californiensis” (WS-RLO), that causes withering syndrome of abalones has had a consistent morphology based on light and electron microscopy. However, a morphological variant of the WS-RLO has recently been observed infecting red abalone from California. We used light and electron microscopy, in situ hybridization and16S rDNA sequence analysis to compare the WS-RLO and the morphologically distinct RLO variant (RLOv). The WS-RLO forms oblong inclusions within the abalone posterior esophagus (PE) and digestive gland (DG) tissues that contain small rod-shaped bacteria; individual bacteria within the light purple inclusions upon hematoxylin and eosin staining cannot be discerned by light microscopy. Like the WS-RLO, the RLOv forms oblong inclusions in the PE and DG but contain large, pleomorphic bacteria that stain dark navy blue with hematoxylin and eosin. Transmission electron microscopy (TEM) examination revealed that the large pleomorphic bacteria within RLOv inclusions were infected with a spherical to icosahedral-shaped putative phage hyperparasite. TEM also revealed the presence of rod-shaped bacteria along the periphery of the RLOv inclusions that were morphologically indistinguishable from the WS-RLO. Binding of the WS-RLO-specific in situ hybridization probe to the RLOv inclusions demonstrated sequence similarity between these RLOs. In addition, sequence analysis revealed 98.9–99.4 % similarity between 16S rDNA sequences of the WS-RLO and RLOv. Collectively, these data suggest that both of these RLOs infecting California abalone are “Candidatus Xenohaliotis californiensis,” and that the novel variant is infected by a putative phage hyperparasite that induced morphological variation of its RLO host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号