首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been suggested that microRNAs (miRs) are involved in the immune regulation of periodontitis. However, it is unclear whether and how miRs regulate the function of B cells in the context of periodontitis. This study is to explore the role of miR-146a on the inflammatory cytokine production of B cells challenged by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). Primary B cells were harvested from mouse spleen. Quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of inflammatory cytokines in B cells in the presence or absence of P. gingivalis LPS and/or miR-146a. Bioinformatics, luciferase reporter assay and overexpression assay were used to explore the binding target of miR-146a. Our results showed that miR-146a level in B cells was elevated by P. gingivalis LPS stimulation, and the mRNA expressions of interleukin (IL)-1β, 6 and 10, and IL-1 receptor associated kinase-1 (IRAK1), but not TNF receptor associated factor 6 (TRAF6), were also upregulated. The expression levels of IL-1β, 6, 10 and IRAK1 were reduced in the presence of miR-146a mimic, but were elevated by the addition of miR-146a inhibitor. MiR-146a could bind with IRAK1 3′ untranslated region (UTR) but not TRAF6 3′-UTR. Overexpression of IRAK1 reversed the inhibitory effects of miR-146a on IL-1β, 6 and 10. In summary, miR-146a inhibits inflammatory cytokine production in B cells through directly targeting IRAK1, suggesting a regulatory role of miR-146a in B cell-mediated periodontal inflammation.  相似文献   

2.

Background

It is of importance to minimize ischemia reperfusion (I/R) injury during liver operations. Reducing the inflammatory reaction is an effective way to achieve this goal. Notably, adiponectin (APN) was found to have anti-inflammatory activity in heart and renal I/R injury. Herein, we investigated the role of APN in liver I/R injury.

Methods

Wistar rats were randomized to four groups: (1) sham group; (2) I/R control group; (3) I/R+APN group; and (4) I/R+APN+AMPK inhibitor group. Liver and blood samples were collected 6h and 24h after reperfusion. Liver function and histopathologic changes were assessed. Macrophage and neutrophil infiltration was detected by immunohistochemistry staining, while pro-inflammatory cytokines and chemokines released in the liver were measured using ELISA and RT-PCR, respectively. Apoptosis was analyzed by TUNEL staining and caspase-3 expression in the liver. Downstream molecules of APN were investigated by Western blotting.

Results

Circulatory APN was down-regulated during liver I/R. When exogenous APN treatment was administered during liver I/R, alanine transaminase (ALT) and aspartate aminotransferase (AST) were decreased, and less hepatocyte necrosis was observed. Less inflammatory cell infiltration and pro-inflammatory cytokines/chemokines release were also observed in the I/R+APN group when compared with the I/R control group. APN treatment also reduced hepatocyte apoptosis, evidenced by reduced TUNEL positive cells and less caspase-3 expression in the reperfused liver. Finally, the AMPK/eNOS pathway was found to be activated by APN, and administration of an AMPK inhibitor reversed the beneficial effects of APN.

Conclusion

APN can protect the liver from I/R injury by reducing the inflammatory response and hepatocyte apoptosis, a process that likely involves the AMPK/eNOS pathway. The current study provides a potential pharmacologic target for liver I/R injury.  相似文献   

3.
We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis.  相似文献   

4.
MicroRNAs are short non-coding RNAs that regulate gene expression and are crucial to tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. Up-regulation of miR-146 has been identified in OSCC tissues. However, the roles of miR-146 in carcinogenesis are controversial as it is suppressive in many other malignancies. The present study investigated the pathogenic implications of miR-146a in oral carcinogenesis. Microdissected OSCC exhibits higher levels of miR-146a expression than matched adjacent mucosal cells. The plasma miR-146a levels of patients are significantly higher than those of control subjects; these levels decrease drastically after tumor resection. miR-146a levels in tumors and in patients’ plasma can be used to classify OSCC and non-disease status (sensitivity: >0.72). Exogenous miR-146a expression is significantly increased in vitro oncogenic phenotypes as well as during xenograft tumorigenesis and OSCC metastasis. The plasma miR-146a levels of these mice parallel the xenograft tumor burdens of the mice. A miR-146a blocker abrogates the growth of xenograft tumors. miR-146a oncogenic activity is associated with down-regulation of IRAK1, TRAF6 and NUMB expression. Furthermore, miR-146a directly targets the 3′UTR of NUMB and a region within the NUMB coding sequence when suppressing NUMB expression. Exogenous NUMB expression attenuates OSCC oncogenicity. Double knockdown of IRAK1 and TRAF6, and of TRAF6 and NUMB, enhance the oncogenic phenotypes of OSCC cells. Oncogenic enhancement modulated by miR-146a expression is attenuated by exogenous IRAK1 or NUMB expression. This study shows that miR-146a expression contributes to oral carcinogenesis by targeting the IRAK1, TRAF6 and NUMB genes.  相似文献   

5.
目的:探究姜黄素后处理是否通过激活SIRT1/FOXO1信号通路抵抗小鼠脑缺血再灌注损伤。方法:小鼠脑缺血30 min,再灌注24 h建立脑缺血再灌注模型。手术前脑室内注射SIRT1特异性抑制剂EX527。再灌注后腹腔注射姜黄素。小鼠随机分为以下6组:假手术组;单纯姜黄素后处理组;缺血再灌注组;缺血再灌注+姜黄素后处理组;EX527预处理+缺血再灌注+姜黄素后处理组;EX527预处理+脑缺血再灌注组。再灌注24 h检测脑梗体积、Complex I活性、ROS含量以及SIRT1、Ac-FOXO1、Bax、Bcl-2、Caspase-3蛋白表达情况。结果:与手术组相比,姜黄素后处理组梗死区脑组织SIRT1的表达量及活性明显增加,脑梗体积降低,ROS含量降低而Complex I活性增高,Bcl-2的表达增高而Bax和Caspase-3的表达量降低(均P0.05)。阻断SIRT1信号通路后上述姜黄素脑保护作用均减弱(P0.05)。结论:我们的研究首次证实姜黄素后处理通过激活SIRT1/FOXO1信号通路,进而降低氧化应激与凋亡,最终减轻脑缺血再灌注损伤。  相似文献   

6.
血红素加氧酶-1在缺血/再灌注损伤中的保护作用   总被引:7,自引:0,他引:7  
血红素加氧酶-1(Heme Oxygenase-1,HO-1)是催化血红素分解的关键酶。近年来,人们对血红素降解产物的抗氧化、抗炎症等功能的认识推动了对HO酶系的研究。缺血/再灌注损伤(IRI)是一个重要的临床问题,而临床上对IRI的防治尚缺乏有效的方法。目前发现HO-1过表达具有抗IRI的作用,其保护作用的可能机制有:抗氧化作用、调节微循环、调节细胞周期和抗炎症作用。  相似文献   

7.
Liver repair after acute liver injury is characterized by hepatocyte proliferation, removal of necrotic tissue, and restoration of hepatocellular and hepatic microvascular architecture. Macrophage recruitment is essential for liver tissue repair and recovery from injury; however, the underlying mechanisms are unclear. Signaling through vascular endothelial growth factor receptor 1 (VEGFR1) is suggested to play a role in macrophage migration and angiogenesis. The aim of the present study was to examine the role of VEGFR1 in liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion (I/R). VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK-/- mice) and wild-type (WT) mice were subjected to hepatic warm I/R, and the processes of liver repair and sinusoidal reconstruction were examined. Compared with WT mice, VEGFR1 TK-/- mice exhibited delayed liver repair after hepatic I/R. VEGFR1-expressing macrophages recruited to the injured liver showed reduced expression of epidermal growth factor (EGF). VEGFR1 TK-/- mice also showed evidence of sustained sinusoidal functional and structural damage, and reduced expression of pro-angiogenic factors. Treatment of VEGFR1 TK-/- mice with EGF attenuated hepatoceullar and sinusoidal injury during hepatic I/R. VEGFR1 TK-/- bone marrow (BM) chimeric mice showed impaired liver repair and sinusoidal reconstruction, and reduced recruitment of VEGFR1-expressing macrophages to the injured liver. VEGFR1-macrophages recruited to the liver during hepatic I/R contribute to liver repair and sinusoidal reconstruction. VEGFR1 activation is a potential therapeutic strategy for promoting liver repair and sinusoidal restoration after acute liver injury.  相似文献   

8.
Ischemia reperfusion injury (IRI) in organ transplantation remains a serious and unsolved problem. Organs that undergo significant damage during IRI, function less well immediately after reperfusion and tend to have more problems at later times when rejection can occur. Biliverdin has emerged as an agent that potently suppress IRI in rodent models. Since the use of biliverdin is being developed as a potential therapeutic modality for humans, we tested the efficacy for its effects on IRI of the liver in swine, an accepted and relevant pre-clinical animal model. Administration of biliverdin resulted in rapid appearance of bilirubin in the serum and significantly suppressed IRI-induced liver dysfunction as measured by multiple parameters including urea and ammonia clearance, neutrophil infiltration and tissue histopathology including hepatocyte cell death. Taken together, our findings, in a large animal model, provide strong support for the continued evaluation of biliverdin as a potential therapeutic in the clinical setting of transplantation of the liver and perhaps other organs.  相似文献   

9.
Cellular and Molecular Neurobiology - MiR-499a-5p was significantly downregulated in degenerative tissues and correlated with apoptosis. Nonetheless, the biological function of miR-499a-5p in acute...  相似文献   

10.
Ischemia reperfusion injury is a common cause of acute kidney injury and is characterized by tubular damage. Mitochondrial DNA is released upon severe tissue injury and can act as a damage-associated molecular pattern via the innate immune receptor TLR9. Here, we investigated the role of TLR9 in the context of moderate or severe renal ischemia reperfusion injury using wild-type C57BL/6 mice or TLR9KO mice. Moderate renal ischemia induced renal dysfunction but did not decrease animal well-being and was not regulated by TLR9. In contrast, severe renal ischemia decreased animal well-being and survival in wild-type mice after respectively one or five days of reperfusion. TLR9 deficiency improved animal well-being and survival. TLR9 deficiency did not reduce renal inflammation or tubular necrosis. Rather, severe renal ischemia induced hepatic injury as seen by increased plasma ALAT and ASAT levels and focal hepatic necrosis which was prevented by TLR9 deficiency and correlated with reduced circulating mitochondrial DNA levels and plasma LDH. We conclude that TLR9 does not mediate renal dysfunction following either moderate or severe renal ischemia. In contrast, our data indicates that TLR9 is an important mediator of hepatic injury secondary to ischemic acute kidney injury.  相似文献   

11.
《Free radical research》2013,47(1):737-743
The objective of this study was to test the hypothesis that the extracellular oxidation of glutathione (GSH) may represent an important mechanism to limit hepatic ischemia/reperfusion injury in male Fischer rats in vivo. Basal plasma levels of glutatione disulfide (GSSG: 1.5 ± 0.2μM GSH-equivalents), glutathione (GSH: 6.2 ± 0.4 μM) and alanine aminotransferase activities (ALT 12 ± 2U/I) were significantly increased during the l h reperfusion period following l h of partial hepatic no-flow ischemia (GSSG: 19.7 ± 2.2μM; GSH 36.9 ± 7.4μM; ALT: 2260 ± 355 U/l). Pretreatment with 1,3-bis-(2-chloroethyl)-I-nitrosourea (40mg BCNU/kg), which inhibited glutathione reductase activity in the liver by 60%. did not affect any of these parameters. Biliary GSSG and GSH efflux rates were reduced and the GSSG-to-GSH ratio was not altered in controls and BCNU-treated rats at any time during ischemia and reperfusion. A 90% depletion of the hepatic glutathione content by phorone treatment (300 mg/kg) reduced the increase of plasma GSSG levels by 54%, totally suppressed the rise of plasma GSH concentrations and increased plasma ALT to 4290 ± 755 U/I during reperfusion. The data suggest that hepatic glutathione serves to limit ischemialreperfusion injury as a source of extracellular glutathione, not as a cofactor for the intracellular enzymatic detoxification of reactive oxygen species.  相似文献   

12.
13.
缺血性损伤后恢复血液供应会导致缺血再灌注(ischemia reperfusion, IR)损伤,这会导致组织损伤进一步加剧。IR损伤伴随着一系列机制,包括谷氨酸兴奋性毒性、钙超载、氧化应激、炎症和细胞凋亡,最终导致细胞死亡。IR损伤过程均由Sirtuins家族调控,在Sirtuins家族中,特异性定位于细胞核中的SIRT6可以促进对DNA损伤和氧化应激的抵抗,抑制基因组的不稳定性,在代谢稳态中发挥作用,同时SIRT6在人重要脏器中处于高度表达状态。但SIRT6在IR损伤中研究较少,结合国内外最新的研究进展,对SIRT6在IR损伤中的作用进行了回顾性的总结和分析,希望对国内外学者对于SIRT6在IR损伤中的研究提供一些参考依据。  相似文献   

14.
International Journal of Peptide Research and Therapeutics - Renal ischemia–reperfusion (IR) is a common cause of acute renal failure and result in remote organ injury. Oxidative stress and...  相似文献   

15.
Wang  Jingtao  Fu  Zhenqiang  Wang  Menghan  Lu  Jingjing  Yang  Hecheng  Lu  Hong 《Neurochemical research》2021,46(8):2167-2180
Neurochemical Research - Long non-coding RNAs (lncRNAs) are considered as critical regulators in the pathogenesis of cerebral ischemia. In this present study, we aimed to investigate the impact and...  相似文献   

16.
The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways.  相似文献   

17.
The protective role of etanercept in myocardial ischemia/reperfusion is not well understood. The aim of this study was to investigate whether etanercept modulates neutrophil accumulation, TNF-α induction and oxidative stress in an ischemia/reperfusion injured rat heart model. Rats were randomly exposed to sham operation, myocardial ischemia/reperfusion (MI/R) alone, MI/R+ etanercept. The results demonstrated that compared to MI/R, etanercept reduced myocardial infarction area, myocardial myeloperoxidase (MPO) levels, serum creatinine kinase (CK) and lactate dehydrogenase (LDH) levels, and both serum and myocardial TNF-α production. Etanercept also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in MI/R rats. In summary, our data suggested that etanercept has protective effects against MI/R injury in rats, which may be attributed to attenuating inflammation and oxidative stress.  相似文献   

18.
目的:通过研究homer1a基因敲除小鼠脑缺血再灌注损伤及海马区星形胶质细胞活化、数目形态变化,探讨homer1a基因在脑缺血损伤中的作用及机制。方法:取雄性homer1a基因敲除(Knock Out,KO)小鼠及同窝野生型(Wild Type,WT)小鼠各15只,分为基因敲除假手术组(Sham Knock Out,SKO,n=3)、基因敲除型缺血2 h再灌注24 h组(Model Knock Out,MKO,n=12)、野生型假手术组(Sham Wild Type,SWT,n=3)及野生型缺血2 h再灌24h组(Model Wild Type,MWT,n=12)。线栓法闭塞小鼠大脑中动脉制作脑缺血再灌注损伤模型(middle cerebral artery occlusion and reperfusion,MCAO/R),在缺血再灌注损伤前(0 h)及缺血再灌注后3 h、6 h、12 h、24 h后进行改良版神经损伤严重性评分(modified Neurological severity scores,m NSS)、2,3,5—氯化三苯基四氮唑(2,3,5triphenyltetrazolium chloride,TTC)染色、苏木素—伊红染色(Hematoxylin-eosin staining,HE)、原位末端转移酶标记技术(terminal deoxynucleotidyl transferase(Td T)-mediated deoxyuridine triphosphate(d UTP)nick end labeling,TUNEL)检测及免疫荧光染色观察海马区星形胶质细胞神经纤维酸性蛋白(Glial Fibrillary Acidic Protein,GFAP)改变。结果:SKO组、SWT组行为学m NSS评分均为0分,TTC染色未见梗死灶。TUNLE及GFAP染色阳性细胞数很少且未见统计学差异(P0.05)。脑缺血再灌注24 h后,MKO组m NSS评分较MWT组高;TTC染色MKO组较MWT组梗死百分比高;MKO组较MWT组TUNEL凋亡率高;GFAP免疫荧光染色阳性数MKO组少于MWT组,且均有统计学差异(P0.05)。结论:homer1a基因敲除加重了小鼠脑缺血再灌注损伤,星形胶质细胞可能参与并发挥复杂作用。  相似文献   

19.
Interleukin-1 (IL-1) activates p38 MAP kinase via the small G protein Ras, and this activity can be down-regulated by another small G protein Rap. Here we have further investigated the role of Ras and Rap in p38 MAPK activation by IL-1. Transient transfection of cells with constitutively active forms of the known IL-1 signaling components MyD88, IRAK, and TRAF-6, or the upstream kinases MKK6 and MKK3, activated p38 MAPK. Dominant negative forms of these were found to inhibit activation of p38 MAPK by IL-1. Dominant negative RasN17 blocked the effect of the active forms of all but MKK3 and MKK6, indicating that Ras lies downstream of TRAF-6 but upstream of MKK3 and MKK6 on the pathway. Furthermore, the activation of p38 MAPK caused by overexpressing active RasVHa could not be inhibited using dominant negative mutants of MyD88, IRAK, or IRAK-2, or TRAF6, but could be inhibited by dominant negative MKK3 or MKK6. In the same manner, the inhibitory effect of Rap on the activation of p38 by IL-1 occurred at a point downstream of MyD88, IRAK, and TRAF6, since the activation of p38 MAPK by these components was inhibited by overexpressing active Rap1AV12, while neither MKK3 nor MKK6 were affected. Active RasVHa associated with IRAK, IRAK2, and TRAF6, but not MyD88. In addition we found a role for TAK-1 in the activation of p38 MAPK by IL-1, with TAK-1 also associating with active Ras. Our study suggests that upon activation Ras becomes associated with IRAK, Traf-6, and TAK-1, possibly aiding the assembly of this multiprotein signaling complex required for p38 MAPK activation by IL-1.  相似文献   

20.
Hepatic ischemia/reperfusion (I/R) injury is an unavoidable consequence of major liver surgery, especially in liver transplantation with bowel congestion, during which endotoxemia is often evident. The inflammatory response aggravated by endotoxin after I/R contributes to liver dysfunction and failure. The purpose of the present study was to investigate the protective effect of butyrate, a naturally occurring four-carbon fatty acid in the body and a dietary component of foods such as cheese and butter, on hepatic injury complicated by enterogenous endotoxin, as well as to examine the underlying mechanisms involved. SD rats were subjected to a total hepatic ischemia for 30 min after pretreatment with either vehicle or butyrate, followed by 6 h and 24 h of reperfusion. Butyrate preconditioning markedly improved hepatic function and histology, as indicated by reduced transaminase levels and ameliorated tissue pathological changes. The inflammatory factors levels, macrophages activation, TLR4 expression, and neutrophil infiltration in live were attenuated by butyrate. Butyrate also maintained the intestinal barrier structures, reversed the aberrant expression of ZO-1, and decreased the endotoxin translocation. We conclude that butyrate inhibition of endotoxin translocation, macrophages activation, inflammatory factors production, and neutrophil infiltration is involved in the alleviation of total hepatic I/R liver injury in rats. This suggests that butyrate should potentially be utilized in liver transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号