首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The GroES mobile loop is a stretch of approximately 16 amino acids that exhibits a high degree of flexible disorder in the free protein. This loop is responsible for the interaction between GroES and GroEL, and it undergoes a folding transition upon binding to GroEL. Results derived from a combination of transferred nuclear Overhauser effect NMR experiments and molecular dynamics simulations indicate that the mobile loop adopts a beta-hairpin structure with a Type I, G1 Bulge turn. This structure is distinct from the conformation of the loop in the co-crystal of GroES with GroEL-ADP but identical to the conformation of the bacteriophage-panned "strongly binding peptide" in the co-crystal with GroEL. Analysis of sequence conservation suggests that sequences of the mobile loop and strongly binding peptide were selected for the ability to adopt this hairpin conformation.  相似文献   

4.
Isothermal titration calorimetry, ITC, has been used to determine the thermodynamics (DeltaG, DeltaH, and -TDeltaS) for binding netropsin to a number of DNA constructs. The DNA constructs included: six different 20-22mer hairpin forming sequences and an 8-mer DNA forming a duplex dimer. All DNA constructs had a single -AT-rich netropsin binding with one of the following sequences, (A(2)T(2))(2), (ATAT)(2), or (AAAA/TTTT). Binding energetics are less dependent on site sequence than on changes in the neighboring single stranded DNA (hairpin loop size and tail length). All of the 1:1 complexes exhibit an enthalpy change that is dependent on the fractional saturation of the binding site. Later binding ligands interact with a significantly more favorable enthalpy change (partial differential DeltaH(1-2) from 2 to 6 kcal/mol) and a significantly less favorable entropy change (partial differential (-TDeltaS(1-2))) from -4 to -9 kcal/mol). The ITC data could only be fit within expected experimental error by use of a thermodynamic model that includes two independent binding processes with a combined stoichiometry of 1 mol of ligand per 1 mol of oligonucleotide. Based on the biophysical evidence reported here, including theoretical calculations for the energetics of "trapping" or structuring of a single water molecule and molecular docking computations, it is proposed that there are two modes by which flexible ligands can bind in the minor groove of duplex DNA. The higher affinity binding mode is for netropsin to lay along the floor of the minor groove in a bent conformation and exclude all water from the groove. The slightly weaker binding mode is for the netropsin molecule to have a slightly more linear conformation and for the required curvature to be the result of a water molecule that bridges between the floor of the minor groove and two of the amidino nitrogens located at one end of the bound netropsin molecule.  相似文献   

5.
The DNA sequence d(G(4)T(4)G(4)) [Oxy-1.5] consists of 1.5 units of the repeat in telomeres of Oxytricha nova and has been shown by NMR and X-ray crystallographic analysis to form a dimeric quadruplex structure with four guanine-quartets. However, the structure reported in the X-ray study has a fundamentally different conformation and folding topology compared to the solution structure. In order to elucidate the possible role of different counterions in this discrepancy and to investigate the conformational effects and dynamics of ion binding to G-quadruplex DNA, we compare results from further experiments using a variety of counterions, namely K(+), Na(+)and NH(4)(+). A detailed structure determination of Oxy-1.5 in solution in the presence of K(+)shows the same folding topology as previously reported with the same molecule in the presence of Na(+). Both conformations are symmetric dimeric quadruplexes with T(4)loops which span the diagonal of the end quartets. The stack of quartets shows only small differences in the presence of K(+)versus Na(+)counterions, but the T(4)loops adopt notably distinguishable conformations. Dynamic NMR analysis of the spectra of Oxy-1.5 in mixed Na(+)/K(+)solution reveals that there are at least three K(+)binding sites. Additional experiments in the presence of NH(4)(+)reveal the same topology and loop conformation as in the K(+)form and allow the direct localization of three central ions in the stack of quartets and further show that there are no specific NH(4)(+)binding sites in the T(4)loop. The location of bound NH(4)(+)with respect to the expected coordination sites for Na(+)binding provides a rationale for the difference observed for the structure of the T(4)loop in the Na(+)form, with respect to that observed for the K(+)and NH(4)(+)forms.  相似文献   

6.
The regulation of a series of cellular events requires specific protein–protein interactions, which are usually mediated by modular domains to precisely select a particular sequence from diverse partners. However, most signaling domains can bind to more than one peptide sequence. How do proteins create promiscuity from precision? Moreover, these complex interactions typically occur at the interface of a well-defined secondary structure, α helix and β sheet. However, the molecular recognition primarily controlled by loop architecture is not fully understood. To gain a deep understanding of binding selectivity and promiscuity by the conformation of loops, we chose the forkhead-associated (FHA) domain as our model system. The domain can bind to diverse peptides via various loops but only interact with sequences containing phosphothreonine (pThr). We applied molecular dynamics (MD) simulations for multiple free and bound FHA domains to study the changes in conformations and dynamics. Generally, FHA domains share a similar folding structure whereby the backbone holds the overall geometry and the variety of sidechain atoms of multiple loops creates a binding surface to target a specific partner. FHA domains determine the specificity of pThr by well-organized binding loops, which are rigid to define a phospho recognition site. The broad range of peptide recognition can be attributed to different arrangements of the loop interaction network. The moderate flexibility of the loop conformation can help access or exclude binding partners. Our work provides insights into molecular recognition in terms of binding specificity and promiscuity and helpful clues for further peptide design.  相似文献   

7.
The in vitro reassembly of tobacco mosaic virus (TMV) begins with the specific recognition by the viral coat protein disk aggregate of an internal TMV RNA sequence, known as the assembly origin (Oa). This RNA sequence contains a putative stem-loop structure (loop 1), believed to be the target for disk binding in assembly initiation, which has the characteristic sequence AAGAAGUCG exposed as a single strand at its apex. We show that a 75-base RNA sequence encompassing loop 1 is sufficient to direct the encapsidation by TMV coat protein disks of a heterologous RNA fragment. This RNA sequence and structure, which is sufficient to elicit TMV assembly in vitro, was explored by site-directed mutagenesis. Structure analysis of the RNA identified mutations that appear to effect assembly via a perturbation in RNA structure, rather than by a direct effect on coat protein binding. The binding of the loop 1 apex RNA sequence to coat protein disks was shown to be due primarily to its regularly repeated G residues. Sequences such as (UUG)3 and (GUG)3 are equally effective at initiating assembly, indicating that the other bases are less functionally constrained. However, substitution of the sequences (CCG)3, (CUG)3 or (UCG)3 reduced the assembly initiation rate, indicating that C residues are unfavourable for assembly. Two additional RNA sequences within the 75-base Oa sequence, both of the form (NNG)3, may play subsidiary roles in disk binding. RNA structure plays an important part in permitting selective protein-RNA recognition, since altering the RNA folding close to the apex of the loop 1 stem reduces the rate of disk binding, as does shortening the stem itself. Whereas the RNA sequence making up the hairpin does not in general affect the specificity of the protein-RNA interaction, it is required to present the apex signal sequence in a special conformation. Mechanisms for this are discussed.  相似文献   

8.
Loss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3′ exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich regions of telomeres are hotspots for oxidation forming 8-oxoguanine, a lesion that is handled by the base excision repair (BER) pathway. One key player of this pathway is Ape1, the main human endonuclease processing abasic sites. Recent evidences showed an important role for Ape1 in telomeric physiology, but the molecular details regulating Ape1 enzymatic activities on G4-telomeric sequences are lacking. Through a combination of in vitro assays, we demonstrate that Ape1 can bind and process different G4 structures and that this interaction involves specific acetylatable lysine residues (i.e. K27/31/32/35) present in the unstructured N-terminal sequence of the protein. The cleavage of an abasic site located in a G4 structure by Ape1 depends on the DNA conformation or the position of the lesion and on electrostatic interactions between the protein and the nucleic acids. Moreover, Ape1 mutants mimicking the acetylated protein display increased cleavage activity for abasic sites. We found that nucleophosmin (NPM1), which binds the N-terminal sequence of Ape1, plays a role in modulating telomere length and Ape1 activity at abasic G4 structures. Thus, the Ape1 N-terminal sequence is an important relay site for regulating the enzyme’s activity on G4-telomeric sequences, and specific acetylatable lysine residues constitute key regulatory sites of Ape1 enzymatic activity dynamics at telomeres.  相似文献   

9.
Our abilities to predict three-dimensional conformation of a polypeptide, given its amino acid sequence, remain limited despite advances in structure analysis. Analysis of structures and sequences of protein families with similar secondary structural elements, but varying topologies, might help in addressing this problem. We have studied the small beta-barrel class of proteins characterized by four strands (n = 4) and a shear number of 8 (S = 8) to understand the principles of barrel formation. Multiple alignments of the various protein sequences were generated for the analysis. Positional entropy, as a measure of residue conservation, indicated conservation of non-polar residues at the core positions. The presence of a type II beta-turn among the various barrel proteins considered was another strikingly invariant feature. A conserved glycyl-aspartyl dipeptide at the beta-turn appeared to be important in guiding the protein sequence into the barrel fold. Molecular dynamics simulations of the type II beta-turn peptide suggested that aspartate is a key residue in the folding of the protein sequence into the barrel. Our study suggests that the conserved type II beta-turn and the non-polar residues in the barrel core are crucial for the folding of the protein's primary sequence into the beta-barrel conformation.  相似文献   

10.
Atherosclerosis (As) is characterized by chronic inflammation and is a major cause of human mortality. ICAM-1-mediated adhesion of leukocytes in vessel walls plays an important role in the pathogenesis of atherosclerosis. Two single nucleotide polymorphisms (SNPs) of human intercellular adhesion molecule-1 (ICAM-1), G241R and K469E, are associated with a number of inflammatory diseases. SNP induced changes in ICAM-1 function rely not only on the expression level but also on the single-molecule binding ability which may be affected by single molecule conformation variations such as protein splicing and folding. Previous studies have shown associations between G241R/K469E polymorphisms and ICAM-1 gene expression. Nevertheless, few studies have been done that focus on the single-molecule forces of the above SNPs and their ligands.  相似文献   

11.
It has been previously shown that the DHX36 gene product, G4R1/RHAU, tightly binds tetramolecular G4-DNA with high affinity and resolves these structures into single strands. Here, we test the ability of G4R1/RHAU to bind and unwind unimolecular G4-DNA. Gel mobility shift assays were used to measure the binding affinity of G4R1/RHAU for unimolecular G4-DNA-formed sequences from the Zic1 gene and the c-Myc promoter. Extremely tight binding produced apparent Kd’s of 6, 3 and 4 pM for two Zic1 G4-DNAs and a c-Myc G4-DNA, respectively. The low enzyme concentrations required for measuring these Kd’s limit the precision of their determination to upper boundary estimates. Similar tight binding was not observed in control non-G4 forming DNA sequences or in single-stranded DNA having guanine-rich runs capable of forming tetramolecular G4-DNA. Using a peptide nucleic acid (PNA) trap assay, we show that G4R1/RHAU catalyzes unwinding of unimolecular Zic1 G4-DNA into an unstructured state capable of hybridizing to a complementary PNA. Binding was independent of adenosine triphosphate (ATP), but the PNA trap assay showed that unwinding of G4-DNA was ATP dependent. Competition studies indicated that unimolecular Zic1 and c-Myc G4-DNA structures inhibit G4R1/RHAU-catalyzed resolution of tetramolecular G4-DNA. This report provides evidence that G4R1/RHAU tightly binds and unwinds unimolecular G4-DNA structures.  相似文献   

12.
13.
St-Pierre JF  Mousseau N 《Proteins》2012,80(7):1883-1894
We present an adaptation of the ART-nouveau energy surface sampling method to the problem of loop structure prediction. This method, previously used to study protein folding pathways and peptide aggregation, is well suited to the problem of sampling the conformation space of large loops by targeting probable folding pathways instead of sampling exhaustively that space. The number of sampled conformations needed by ART nouveau to find the global energy minimum for a loop was found to scale linearly with the sequence length of the loop for loops between 8 and about 20 amino acids. Considering the linear scaling dependence of the computation cost on the loop sequence length for sampling new conformations, we estimate the total computational cost of sampling larger loops to scale quadratically compared to the exponential scaling of exhaustive search methods.  相似文献   

14.
Scott KA  Daggett V 《Biochemistry》2007,46(6):1545-1556
The problem of how a protein folds from a linear chain of amino acids to the three-dimensional structure necessary for function is often investigated using proteins with a low degree of sequence identity that adopt different folds. The design of pairs of proteins with a high degree of sequence identity but different folds offers the opportunity for a complementary study; in two highly similar sequences, which residues are the most important in directing folding to a particular structure? Here we use molecular dynamics simulations to characterize the folding-unfolding pathways of a pair of proteins designed by Bryan and co-workers [Alexander, P. A., et al. (2005) Biochemistry 44, 14045-14054; He, Y. N., et al. (2005) Biochemistry 44, 14055-14061]. Despite being 59% identical, the two protein sequences fold to two different structures. The first sequence folds to the alpha+beta protein G structure and the second to the all-alpha-helical protein A structure. We show that the final protein structure is determined early along the folding pathway. In folding to the protein G structure, the single alpha-helix (alpha1) and the beta3-beta4 turn fold early. Formation of the hairpin turn essentially prevents folding to helical structure in this region of the protein. This early structure is then consolidated by formation of long-range hydrophobic interactions between alpha1 and the beta3-beta4 turn. The protein A sequence differs both in the residues that form the beta3-beta4 turn and also in many of the residues that form the early hydrophobic interactions in the protein G structure. Instead, in the protein A sequence, a more hierarchical mechanism is observed, with helices folding before many of the tertiary interactions are formed. We find that small, but critical, sequence differences determine the topology of the protein early along the folding pathway, which help to explain the process by which one fold can evolve into another.  相似文献   

15.
Vascular endothelial growth factor (VEGF) proximal promoter region contains a poly G/C-rich element that is essential for basal and inducible VEGF expression. The guanine-rich strand on this tract has been shown to form the DNA G-quadruplex structure, whose stabilization by small molecules can suppress VEGF expression. We report here the nuclear magnetic resonance structure of the major intramolecular G-quadruplex formed in this region in K+ solution using the 22mer VEGF promoter sequence with G-to-T mutations of two loop residues. Our results have unambiguously demonstrated that the major G-quadruplex formed in the VEGF promoter in K+ solution is a parallel-stranded structure with a 1:4:1 loop-size arrangement. A unique capping structure was shown to form in this 1:4:1 G-quadruplex. Parallel-stranded G-quadruplexes are commonly found in the human promoter sequences. The nuclear magnetic resonance structure of the major VEGF G-quadruplex shows that the 4-nt middle loop plays a central role for the specific capping structures and in stabilizing the most favored folding pattern. It is thus suggested that each parallel G-quadruplex likely adopts unique capping and loop structures by the specific middle loops and flanking segments, which together determine the overall structure and specific recognition sites of small molecules or proteins.LAY SUMMARY: The human VEGF is a key regulator of angiogenesis and plays an important role in tumor survival, growth and metastasis. VEGF overexpression is frequently found in a wide range of human tumors; the VEGF pathway has become an attractive target for cancer therapeutics. DNA G-quadruplexes have been shown to form in the proximal promoter region of VEGF and are amenable to small molecule drug targeting for VEGF suppression. The detailed molecular structure of the major VEGF promoter G-quadruplex reported here will provide an important basis for structure-based rational development of small molecule drugs targeting the VEGF G-quadruplex for gene suppression.  相似文献   

16.
Lu HM  Liang J 《Proteins》2008,70(2):442-449
To study protein nascent chain folding during biosynthesis, we investigate the folding behavior of models of hydrophobic and polar (HP) chains at growing length using both two-dimensional square lattice model and an optimized three-dimensional 4-state discrete off-lattice model. After enumerating all possible sequences and conformations of HP heteropolymers up to length N = 18 and N = 15 in two and three-dimensional space, respectively, we examine changes in adopted structure, stability, and tolerance to single point mutation as the nascent chain grows. In both models, we find that stable model proteins have fewer folded nascent chains during growth, and often will only fold after reaching full length. For the few occasions where partial chains of stable proteins fold, these partial conformations on average are very similar to the corresponding parts of the final conformations at full length. Conversely, we find that sequences with fewer stable nascent chains and sequences with native-like folded nascent chains are more stable. In addition, these stable sequences in general can have many more point mutations and still fold into the same conformation as the wild type sequence. Our results suggest that stable proteins are less likely to be trapped in metastable conformations during biosynthesis, and are more resistant to point-mutations. Our results also imply that less stable proteins will require the assistance of chaperone and other factors during nascent chain folding. Taken together with other reported studies, it seems that cotranslational folding may not be a general mechanism of in vivo protein folding for small proteins, and in vitro folding studies are still relevant for understanding how proteins fold biologically.  相似文献   

17.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.     相似文献   

18.
Bivalent or bispecific binding activity of proteins has been mainly achieved by assembling two or more domains in a single molecule. Here we report bivalent/bispecific single-domain proteins based on the kringle domain (KD), which has a cystine knot structural motif and is highly tolerant of sequence modifications. KD has seven loops protruding from the core fold into two largely opposite directions, dubbed loop cluster regions (LCRs) 1 and 2. Mutational analysis of previously isolated agonistic KD variants against human death receptors (DRs) 4 and 5 revealed that they can simultaneously recognize two target molecules of DR4 and/or DR5 via the two independent binding sites of LCR1 and LCR2. Binding loop mapping of yeast-surface-displayed KD mutants identified high-affinity target binding loops in LCR2, which were then grafted into conformationally compatible loops located on the opposite side of LCR1 within the same or different KD variants to generate bivalent/bispecific KD variants against DR4 and/or DR5 with improved affinity. The loop-grafted bivalent/bispecific KD variants showed enhanced cell-death-inducing activity of tumor cells compared with their monovalent/monospecific and bivalent/monospecific counterparts, demonstrating an advantage of bispecific targeting to both DR4 and DR5 over the targeting of only one of the two pro-apoptotic receptors. Our results suggest that the KD with the two independent binding surfaces for target recognition is an appropriate scaffold for the development of bivalency and/or bispecificity by loop grafting on the single domain, which offers a distinct advantage over other protein scaffolds with a single binding surface.  相似文献   

19.
G-quadruplexes (GQ) are formed by the association of guanine-rich stretches of DNA. Certain small molecules can influence kinetics and thermodynamics of this association. Understanding the mechanism of ligand-assisted GQ folding is necessary for the design of more efficient cancer therapeutics. The oligonucleotide d(TAGGG)2 forms parallel bimolecular GQ in the presence of ≥66 mM K+; GQs are not formed under Na+, Li+ or low K+ conditions. The thermodynamic parameters for GQ folding at 60 μM oligonucleotide and 100 mM KCl are ΔH = −35 ± 2 kcal mol−1 and ΔG310 = −1.4 kcal mol−1. Quadruplex [d(TAGGG)2]2 binds 2-3 K+ ions with Kd of 0.5 ± 0.2 mM. Our work addresses the question of whether metal free 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) and its Zn(II), Cu(II), and Pt(II) derivatives are capable of facilitating GQ folding of d(TAGGG)2 from single stranded, or binding to preformed GQ, using UV-vis and circular dichroism (CD) spectroscopies. ZnTMPyP4 is unique among other porphyrins in its ability to induce GQ structure of d(TAGGG)2, which also requires at least a low amount of potassium. ZnTMPyP4 binds with 2:1 stoichiometry possibly in an end-stacking mode with a ∼106 M−1 binding constant, determined through UV-vis and ITC titrations. This process is entropically driven and has ΔG298 of −8.0 kcal mol−1. TMPyP4 binds with 3:1 stoichiometry and Ka of ∼106 M−1. ZnTMPyP4 and TMPyP4 are efficient stabilizers of [d(TAGGG)2]2 displaying ΔT1/2 of 13.5 and 13.8 °C, respectively, at 1:2 GQ to porphyrin ratio; CuTMPyP4 shows a much weaker effect (ΔT1/2 = 4.7 °C) and PtTMPyP4 is weakly destabilizing (ΔT1/2 = −2.9 °C). The selectivity of ZnTMPyP4 for GQ versus dsDNA is comparable to that of TMPyP4. The ability of ZnTMPyP4 to bind and stabilize GQ, to induce GQ formation, and speed up its folding may suggest an important biological activity for this molecule.  相似文献   

20.
Lin28 is an evolutionarily conserved RNA-binding protein that inhibits processing of pre-let-7 microRNAs (miRNAs) and regulates translation of mRNAs that control developmental timing, pluripotency, metabolism, and tumorigenesis. The RNA features that mediate Lin28 binding to the terminal loops of let-7 pre-miRNAs and to Lin28-responsive elements (LREs) in mRNAs are not well defined. Here we show that Lin28 target datasets are enriched for RNA sequences predicted to contain stable planar structures of 4 guanines known as G-quartets (G4s). The imino NMR spectra of pre-let-7 loops and LREs contain resonances characteristic of G4 hydrogen bonds. These sequences bind to a G4-binding fluorescent dye, N-methyl-mesoporphyrin IX (NMM). Mutations and truncations in the RNA sequence that prevent G4 formation also prevent Lin28 binding. The addition of Lin28 to a pre-let-7 loop or an LRE reduces G4 resonance intensity and NMM binding, suggesting that Lin28 may function to remodel G4s. Further, we show that NMM inhibits Lin28 binding. Incubation of a human embryonal carcinoma cell line with NMM reduces its stem cell traits. In particular it increases mature let-7 levels, decreases OCT4, HMGA1, CCNB1, CDK4, and Lin28A protein, decreases sphere formation, and inhibits colony formation. Our results suggest a previously unknown structural feature of Lin28 targets and a new strategy for manipulating Lin28 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号