首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intravaginal infection with C. muridarum in mice often results in hydrosalpinx similar to that found in women urogenitally infected with C. trachomatis, making the C. muridarum lower genital tract infection murine model suitable for studying C. trachomatis pathogenesis. To our surprise, DBA1/j mice were highly resistant to hydrosalpinx following an intravaginal infection with C. muridarum although these mice were as susceptible to lower genital tract infection as other mouse strains. A significantly lower level of C. muridarum organisms was recovered from the oviduct of DBA1/j mice, correlating the resistance to hydrosalpinx with reduced ascension of C. muridarum to the oviduct. The DBA1/j resistance to hydrosalpinx was effectively overcome by intracervical inoculation with C. muridarum. The intracervically inoculated DBA1/j mice developed severe hydrosalpinx with the highest levels of live C. muridarum organisms recovered from uterine tissue on day 3 and oviduct tissue on day 7 post inoculation while in intravaginally inoculated DBA1/j mice, the peak of live organism recovery from uterine tissue was delayed to day 7 with no rise in the amount of live organisms recovered from the oviduct. These observations have not only validated the correlation between hydrosalpinx and live organism invasion in the oviduct but also demonstrated that the intracervical inoculation, by promoting rapid chlamydial replication in the uterine epithelial cells and ascension to the oviduct of DBA1/j mice, may be used for further understanding chlamydial pathogenic mechanisms. The above findings also suggest that strategies aimed at reducing tubal infection may be most effective in blocking tubal pathology.  相似文献   

2.
We previously reported that 5 Chlamydia muridarum antigens reacted with antisera from >90% mice urogenitally infected with C. muridarum and they are TC0660 (ABC transporter or ArtJ), TC0727 (outer membrane complex protein B or OmcB), TC0828 (macrophage infectivity potentiator or MIP), TC0726 (inclusion membrane protein or Inc) & TC0268 (hypothetical protein or HP). The orthologs of these antigens in Chlamydia trachomatis were also highly reactive with antisera from women urogenitally infected with C. trachomatis. In the current study, we evaluated these C. muridarum antigens for their ability to induce protection against a C. muridarum intravaginal challenge infection in mice. We found that only MIP induced the most pronounced protection against C. muridarum infection. The protection correlated well with robust C. muridarum MIP-specific antibody and Th1-dominant T cell responses. The MIP-immunized mice displayed significantly reduced live organism shedding from the lower genital tract and highly attenuated inflammatory pathologies in the upper genital tissues. These results demonstrate that MIP, an immunodominant antigen identified by both human and mouse antisera, may be considered a component of a multi-subunit chlamydial vaccine for inducing protective immunity.  相似文献   

3.
The female lower genital tract is constantly exposed to microbial infection, some of which can ascend to and cause pathology such as hydrosalpinx in the upper genital tract, which can affect fertility. To understand host mechanisms for preventing upper genital tract pathology, we screened 11 inbred strains of mice for hydrosalpinx induction by C. muridarum. When examined on days 60 to 80 after intravaginal infection, the 11 strains fell into 3 groups based on their hydrosalpinx severity: CBA/J and SJL/J mice were highly susceptible with a hydrosalpinx score of 5 or greater; Balb/c, C57BL/6J, C57BL/10J, C3H/HeJ and C3H/HeN were susceptible with a score between 1 and <5; NOD/ShiLtJ, DBA/1J, DBA/2J and A/J were resistant with a score of <1. The diverse range of mouse susceptibility to hydrosalpinx induction may reflect the varied clinical outcomes of C. trachomatis-infected women. When the 11 strains were infected via an intrauterine inoculation to bypass the requirement for ascension, higher incidence and more severe hydrosalpinges were induced in most mice, indicating that the interaction between chlamydial ascension and host control of ascension is critical for determining susceptibility to hydrosalpinx development in many mice. However, a few mouse strains resisted significant exacerbation of hydrosalpinx by intrauterine infection, indicating that these mice have evolved ascension-independent mechanisms for preventing upper genital tract pathology. Together, the above observations have demonstrated that different strains of mice can prevent upper genital tract pathology by using different mechanisms.  相似文献   

4.
Chlamydia muridarum induction of mouse hydrosalpinx, depending on both tubal infection and inflammation, has been used for investigating Chlamydia trachomatis pathogenesis. We now report that IL-6 both inhibits C. muridarum infection and exacerbates pathogenicity in the mouse genital tract. When intravaginally inoculated with a high dose of C. muridarum, IL-6-deficient mice developed more extensive genital tract infection with severe hydrosalpinx, suggesting that IL-6 is required for controlling the high dose infection but not essential for C. muridarum-induced pathology. However, at a low dose, IL-6-deficient mice still developed more extensive infection in the genital tract but no longer with significant pathology, suggesting that IL-6 is required for both controlling the low dose infection and exacerbating the low dose infection-induced pathology. The lack of hydrosalpinx in IL-6-deficient mice correlated with significantly reduced inflammatory infiltration in the oviduct tissue and decreased spleen CD4+ and CD8+ T cells that produce TNFα. Thus, IL-6-dependent pathways are important for both limiting chlamydial colonization in the genital tract mucosal tissues regardless of the infection doses and exacerbating chlamydial pathogenicity in the upper genital tract when IL-6-independent pathogenic mechanisms are not yet activated with a low infection dose.  相似文献   

5.
Matrix metalloproteinases (MMPs) are a family of host-derived enzymes involved in the turnover of extracellular matrix (ECM) molecules and the processing of cytokines, chemokines and growth factors. We have previously reported that global inhibition of MMP in Chlamydia muridarum urogenital tract infection of susceptible strains of female mice impeded ascension of C. muridarum into the upper genital tract, blunted acute inflammatory responses and reduced the rate of formation of chronic disease. Because we have also observed that MMP-9 (also known as gelatinase B) is expressed in relatively large quantities in susceptible strains of mice in response to infection during acute phases of infection, we explored this further in a more selected fashion. We infected MMP-9 gene knockout mice and wild type controls intravaginally with C. muridarum. Both groups of mice had similar isolation rates from the lower urogenital tract but the absence of MMP-9 resulted in a slightly lower isolation rate in the upper genital tract, blunted acute inflammatory indices in the affected tissues and a reduced rate of formation of hydrosalpinx–a surrogate marker of infertility. These results imply that MMP-9 is involved in pathogenesis of chlamydial infection in this model possibly by amplifying inflammatory responses.  相似文献   

6.
7.

Background

Regulation of immune responses is critical for controlling inflammation and disruption of this process can lead to tissue damage. We reported that CXCL13 was induced in fallopian tube tissue following C. trachomatis infection. Here, we examined the influence of the CXCL13-CXCR5 axis in chlamydial genital infection.

Methodology and Principal Findings

Disruption of the CXCL13-CXCR5 axis by injecting anti-CXCL13 Ab to BALB/c mice or using Cxcr5−/− mice increased chronic inflammation in the upper genital tract (UGT; uterine horns and oviducts) after Chlamydia muridarum genital infection (GT). Further studies in Cxcr5−/− mice showed an elevation in bacterial burden in the GT and increased numbers of neutrophils, activated DCs and activated NKT cells early after infection. After resolution, we noted increased fibrosis and the accumulation of a variety of T cells subsets (CD4-IFNγ, CD4-IL-17, CD4-IL-10 & CD8-TNFα) in the oviducts. NKT cell depletion in vitro reduced IL-17α and various cytokines and chemokines, suggesting that activated NKT cells modulate neutrophils and DCs through cytokine/chemokine secretion. Further, chlamydial glycolipids directly activated two distinct types of NKT cell hybridomas in a cell-free CD1d presentation assay and genital infection of Cd1d−/− mice showed reduced oviduct inflammation compared to WT mice. CXCR5 involvement in pathology was also noted using single-nucleotide polymorphism analysis in C. trachomatis infected women attending a sub-fertility clinic. Women who developed tubal pathology after a C. trachomatis infection had a decrease in the frequency of CXCR5 SNP +10950 T>C (rs3922).

Conclusions/Significance

These experiments indicate that disruption of the CXCL13-CXCR5 axis permits increased activation of NKT cells by type I and type II glycolipids of Chlamydia muridarum and results in UGT pathology potentially through increased numbers of neutrophils and T cell subsets associated with UGT pathology. In addition, CXCR5 appears to contribute to inter-individual differences in human tubal pathology following C. trachomatis infection.  相似文献   

8.
We have previously shown that the plasmid-encoded Pgp3 is a major virulence factor for C. muridarum induction of hydrosalpinx. We now report that Pgp5 also plays a significant role in the development of hydrosalpinx following C. muridarum induction. Pgp5 deficiency was introduced via either in-frame deletion (CM-Δpgp5) or premature stop codon installation (CM-pgp5S). Mice infected with either CM-Δpgp5 or CM-pgp5S developed hydrosalpinges at significantly reduced levels with an incidence rate of <40% and a mean severity score of 2 or less. In contrast, 80% or more mice developed hydrosalpinx with a severity score of >3 when mice were infected with Pgp5-sufficient C. muridarum (plasmid-competent wild type or plasmid-free C. muridarum transformed with a full plasmid or depleted of pgp7 gene). The attenuated pathogenicity of the Pgp5-deficient C. muridarum correlated with a significantly reduced level of ascending infection in the oviduct tissue despite the similar overall shedding courses between mice infected with Pgp5-deficeint versus sufficient C. muridarum. Furthermore, in the oviducts of mice infected with Pgp5-deficient C. muridarum, significantly lower levels of inflammatory cell infiltration and cytokine production were detected. Thus, Pgp5 is a significant plasmid-encoded virulence factor for C. muridarum pathogenicity in the upper genital tract.  相似文献   

9.
Chlamydia trachomatis infection in the lower genital tract, if untreated, can ascend to the upper genital tract, potentially leading to complications such as tubal factor infertility. The ascension involves cell-to-cell spreading, which may require C. trachomatis organisms to overcome mucosal extracellular effectors such as antimicrobial peptides. We found that among the 8 antimicrobial peptides tested, the cathelicidin LL-37 that is produced by both urogenital epithelial cells and the recruited neutrophils possessed a most potent antichlamydial activity. Interestingly, this antichlamydial activity was completely inhibited by CPAF, a C. trachomatis-secreted serine protease. The inhibition was dependent on CPAF's proteolytic activity. CPAF selectively degraded LL-37 and other antimicrobial peptides with an antichlamydial activity. CPAF is known to secrete into and accumulate in the infected host cell cytoplasm at the late stage of chlamydial intracellular growth and may be released to confront the extracellular antimicrobial peptides before the intra-inclusion organisms are exposed to extracellular environments during host cell lysis and chlamydial spreading. Thus, the finding that CPAF selectively targets host antimicrobial peptides that possess antichlamydial activities for proteolysis suggests that CPAF may contribute to C. trachomatis pathogenicity by aiding in ascending infection.  相似文献   

10.
11.
Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singly-infected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans.  相似文献   

12.
To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamydia-induced upper genital tract gross pathology and histopathological characterization were also detected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were significantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vaccinated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against pathological consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immunization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.  相似文献   

13.

Background

Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies.

Methodology/Principal Findings

Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects.

Conclusions

These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.  相似文献   

14.
Advanced animal models, such as minipigs, are needed for the development of a globally requested human Chlamydia vaccine. Previous studies have shown that vaginal inoculation of sexually mature Göttingen minipigs with Chlamydia trachomatis resulted in an infection lasting only 3–5 days.The aim of this study was to evaluate the effect of targeting the upper porcine genital tract by transcervical and transabdominal intrauterine inoculation, compared to previously performed vaginal inoculation. Furthermore, we investigated the effect of the hormonal cycle, estrus vs. diestrus, on the establishment of a C. trachomatis infection in the minipig.Targeting the upper genital tract (transcervical inoculation) resulted in a longer lasting infection (at least 7 days) compared to vaginal inoculation (3–5 days). When comparing intrauterine inoculation during estrus and diestrus, inoculation during diestrus resulted in a longer lasting infection (at least 10 days) compared to estrus (3–5 days). Furthermore, we found a significant C. trachomatis specific IFN-γ response in pigs inoculated during estrus correlating with the accelerated clearance of infection in these pigs.These findings suggest that for implementation of an optimal model of C. trachomatis in minipigs, inoculation should bypass the cervix and preferable be performed during diestrus.  相似文献   

15.
建立小鼠生殖道沙眼衣原体感染模型,观察小鼠生殖道局部促炎性细胞因子的表达。将小鼠生物型沙眼衣原体C. muridarum 1&#215;104 IFU阴道接种于C57B6背景雌性小鼠,取感染后阴道拭子做沙眼衣原体培养,计算IFU,监测小鼠感染和病原体清除情况;80 d后处死小鼠,检测子宫输卵管病理改变;ELISA检测感染过程中小鼠生殖道促炎性细胞因子IL-1α、IL-6、MIP-2和TNF-α产生情况。小鼠感染在第3至第15天维持较高水平,然后病原体被逐渐清除,整个病程约3~5周;病理检测显示子宫输卵有严重炎症、管腔扩张积水,狭窄等;于感染后第3天检测到局部IL-1α、IL-6、MIP-2分泌,第7天达高峰,然后逐渐下降至正常水平( IL-6于11 d恢复正常,IL-1α和 MIP-2于15 d恢复正常)。 TNF-α仅在第7天检测到高水平表达。相对于TNF-α和IL-6,IL-1α和MIP-2维持时间较长。成功建立沙眼衣原体感染小鼠生殖道模型,沙眼衣原体急性感染可诱导小鼠生殖道局部分泌IL-1α、IL-6、MIP-2和TNF-α。  相似文献   

16.
Genital tract infections with Chlamydia trachomatis (C. trachomatis) are the most frequent transmitted sexually disease in women worldwide. Inefficient clearance or persistence of the pathogens may lead to ascending infections of the upper genital tract and are supposed to cause chronic inflammatory damage to infected tissues 1,2. As a consequence, severe clinical sequelae like pelvic inflammatory disease (PID), tubal occlusion and infertility may occur 3,4. Most of the research with C. trachomatis has been conducted in epithelial cell lines (e.g. HEp-2 cells and HeLa-229) or in mice. However, as with cell- culture based models, they do neither reflect the physiology of native tissue nor the pathophysiology of C. trachomatis genital tract infections in vivo 5. Further limitations are given by the fact that central signaling cascades (e.g. IFN-γ mediated JAK/STAT signaling pathway) that control intracellular chlamydial growth fundamentally differ between mice and humans 6,7. We and others therefore established a whole organ fallopian tube model to investigate direct interactions between C. trachomatis and human fallopian tube cells ex vivo 8,9.For this purpose, human fallopian tubes from women undergoing hysterectomy were collected and infected with C. trachomatis serovar D. Within 24 h post infection, specimen where analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to detect Chlamydia trachomatis mediated epithelial damage as well as C. trachomatis inclusion formation in the fallopian tissue.  相似文献   

17.
To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamy- dia-induced upper genital tract gross pathology and histopathological characterization were also de- tected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were sig- nificantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vacci- nated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against patho- logical consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immu- nization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.  相似文献   

18.
B cells can contribute to acquired immunity against intracellular bacteria, but do not usually participate in primary clearance. Here, we examined the endogenous CD4 T cell response to genital infection with Chlamydia muridarum using MHC class-II tetramers. Chlamydia-specific CD4 T cells expanded rapidly and persisted as a stable memory pool for several months after infection. While most lymph node Chlamydia-specific CD4 T cells expressed T-bet, a small percentage co-expressed Foxp3, and RORγt-expressing T cells were enriched within the reproductive tract. Local Chlamydia-specific CD4 T cell priming was markedly reduced in mice lacking B cells, and bacteria were able to disseminate to the peritoneal cavity, initiating a cellular infiltrate and ascites. However, bacterial dissemination also coincided with elevated systemic Chlamydia-specific CD4 T cell responses and resolution of primary infection. Together, these data reveal heterogeneity in pathogen-specific CD4 T cell responses within the genital tract and an unexpected requirement for B cells in regulating local T cell activation and bacterial dissemination during genital infection.  相似文献   

19.
【目的】探讨不同免疫途径沙眼衣原体(Chlamydia trachomatis,Ct)分泌性蛋白Pgp3的免疫保护效果,分析其可能的保护机制,以确定Pgp3蛋白疫苗在Ct疫苗研制中的应用价值。【方法】分泌性蛋白Pgp3经滴鼻或肌注途径免疫雌性Balb/c小鼠,免疫60 d后,阴道接种鼠沙眼衣原体(Chlamydia muridarum,Cm)建立生殖道感染动物模型,在该模型中评价Pgp3蛋白疫苗抗Cm感染的保护效果,并探讨其机制。【结果】滴鼻或肌注免疫后,小鼠血清及生殖道中检测到了特异性抗体;小鼠脾淋巴细胞产生IFN-γ、IL-17及IL-5水平均明显高于对照组,且滴鼻免疫组IFN-γ水平升高较肌注组更显著(P<0.05);Pgp3蛋白滴鼻免疫组小鼠经Cm生殖道感染后,阴道带菌时间明显缩短,输卵管病理改变轻而肌注免疫组其保护作用不明显。【结论】Pgp3蛋白经滴鼻免疫可有效诱导小鼠产生明显的抗Cm保护效应。其可能的免疫保护机制与诱导Th1型为主的细胞免疫应答及高效价的特异性抗体有关,提示Pgp3蛋白疫苗具有潜在的疫苗研究与开发价值。  相似文献   

20.
Transformation of Chlamydia trachomatis should greatly advance the chlamydial research. However, significant progress has been hindered by the failure of C. trachomatis to induce clinically relevant pathology in animal models. Chlamydia muridarum, which naturally infects mice, can induce hydrosalpinx in mice, a tubal pathology also seen in women infected with C. trachomatis. We have developed a C. muridarum transformation system and confirmed Pgp1, -2, -6, and -8 as plasmid maintenance factors, Pgp3, -5, and -7 as dispensable for in vitro growth, and Pgp4 as a positive regulator of genes that are dependent on plasmid for expression. More importantly, we have discovered that Pgp5 can negatively regulate the same plasmid-dependent genes. Deletion of Pgp5 led to a significant increase in expression of the plasmid-dependent genes, suggesting that Pgp5 can suppress the expression of these genes. Replacement of pgp5 with a mCherry gene, or premature termination of pgp5 translation, also increased expression of the plasmid-dependent genes, indicating that Pgp5 protein but not its DNA sequence is required for the inhibitory effect. Replacing C. muridarum pgp5 with a C. trachomatis pgp5 still inhibited the plasmid-dependent gene expression, indicating that the negative regulation of plasmid-dependent genes is a common feature of all Pgp5 regardless of its origin. Nevertheless, C. muridarum Pgp5 is more potent than C. trachomatis Pgp5 in suppressing gene expression. Thus, we have uncovered a novel function of Pgp5 and developed a C. muridarum transformation system for further mapping chlamydial pathogenic and protective determinants in animal models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号