首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of positioned nucleosomes.  相似文献   

3.
In vivo nucleosomes often occupy well-defined preferred positions on genomic DNA. An important question is to what extent these preferred positions are directly encoded by the DNA sequence itself. We derive here from in vivo positions, accurately mapped by partial micrococcal nuclease digestion, a translational positioning signal that identifies the approximate midpoint of DNA bound by a histone octamer. This midpoint is, on average, highly A/T rich (∼73%) and, in particular, the dinucleotide TpA occurs preferentially at this and other outward-facing minor grooves. We conclude that in this set of sequences the sequence code for DNA bending and nucleosome positioning differs from the other described sets and we suggest that the enrichment of AT-containing dinucleotides at the centre is required for local untwisting. We show that this signature is preferentially associated with nucleosomes flanking promoter regions and suggest that it contributes to the establishment of gene-specific nucleosome arrays.  相似文献   

4.
Wang JP  Widom J 《Nucleic acids research》2005,33(21):6743-6755
DNA sequences that are present in nucleosomes have a preferential approximately 10 bp periodicity of certain dinucleotide signals, but the overall sequence similarity of the nucleosomal DNA is weak, and traditional multiple sequence alignment tools fail to yield meaningful alignments. We develop a mixture model that characterizes the known dinucleotide periodicity probabilistically to improve the alignment of nucleosomal DNAs. We assume that a periodic dinucleotide signal of any type emits according to a probability distribution around a series of 'hot spots' that are equally spaced along nucleosomal DNA with 10 bp period, but with a 1 bp phase shift across the middle of the nucleosome. We model the three statistically most significant dinucleotide signals, AA/TT, GC and TA, simultaneously, while allowing phase shifts between the signals. The alignment is obtained by maximizing the likelihood of both Watson and Crick strands simultaneously. The resulting alignment of 177 chicken nucleosomal DNA sequences revealed that all 10 distinct dinucleotides are periodic, however, with only two distinct phases and varying intensity. By Fourier analysis, we show that our new alignment has enhanced periodicity and sequence identity compared with center alignment. The significance of the nucleosomal DNA sequence alignment is evaluated by comparing it with that obtained using the same model on non-nucleosomal sequences.  相似文献   

5.
We have previously shown that nucleosomes are conformationally dynamic: DNA sequences that in the time-average are buried inside nucleosomes are nevertheless transiently accessible, even to large proteins (or any other macromolecule). We refer to this dynamic behavior as "site exposure". Here we show that: (i) the equilibrium constants describing this dynamic site exposure decrease progressively from either end of the nucleosomal DNA in toward the middle; and (ii) these position-dependent equilibrium constants are strongly dependent on the nucleosomal DNA sequence. The progressive decrease in equilibrium constant with distance inside the nucleosome supports the hypothesis that access to sites internal to a nucleosome is provided by progressive (transient) release of DNA from the octamer surface, starting from one end of the nucleosomal DNA. The dependence on genomic DNA sequence implies that a specific genomic DNA sequence could be a major determinant of target site occupancies achieved by regulatory proteins in vivo, by either governing the time-averaged accessibility for a given nucleosome position, or biasing the time-averaged positioning (of mobile nucleosomes), which in turn is a major determinant of site accessibility.  相似文献   

6.
7.
8.
We have mapped in vitro nucleosome positioning on the sheep β-lactoglobulin gene using high-throughput sequencing to characterise the DNA sequences recovered from reconstituted nucleosomes. This methodology surpasses previous approaches for coverage, accuracy and resolution and, most importantly, offers a simple yet rapid and relatively inexpensive method to characterise genomic DNA sequences in terms of nucleosome positioning capacity. We demonstrate an unambiguous correspondence between in vitro and in vivo nucleosome positioning around the promoter of the gene; identify discrete, sequence-specific nucleosomal structures above the level of the canonical core particle—a feature that has implications for regulatory protein access and higher-order chromatin packing; and reveal new insights into the involvement of periodically organised dinucleotide sequence motifs of the type GG and CC and not AA and TT, as determinants of nucleosome positioning—an observation that supports the idea that the core histone octamer can exploit different patterns of sequence organisation, or structural potential, in the DNA to bring about nucleosome positioning.  相似文献   

9.
10.

Background

Chromosome structure, DNA metabolic processes and cell type identity can all be affected by changing the positions of nucleosomes along chromosomal DNA, a reaction that is catalysed by SNF2-type ATP-driven chromatin remodelers. Recently it was suggested that in vivo, more than 50% of the nucleosome positions can be predicted simply by DNA sequence, especially within promoter regions. This seemingly contrasts with remodeler induced nucleosome mobility. The ability of remodeling enzymes to mobilise nucleosomes over short DNA distances is well documented. However, the nucleosome translocation processivity along DNA remains elusive. Furthermore, it is unknown what determines the initial direction of movement and how new nucleosome positions are adopted.

Methodology/Principal Findings

We have used AFM imaging and high resolution PAGE of mononucleosomes on 600 and 2500 bp DNA molecules to analyze ATP-dependent nucleosome repositioning by native and recombinant SNF2-type enzymes. We report that the underlying DNA sequence can control the initial direction of translocation, translocation distance, as well as the new positions adopted by nucleosomes upon enzymatic mobilization. Within a strong nucleosomal positioning sequence both recombinant Drosophila Mi-2 (CHD-type) and native RSC from yeast (SWI/SNF-type) repositioned the nucleosome at 10 bp intervals, which are intrinsic to the positioning sequence. Furthermore, RSC-catalyzed nucleosome translocation was noticeably more efficient when beyond the influence of this sequence. Interestingly, under limiting ATP conditions RSC preferred to position the nucleosome with 20 bp intervals within the positioning sequence, suggesting that native RSC preferentially translocates nucleosomes with 15 to 25 bp DNA steps.

Conclusions/Significance

Nucleosome repositioning thus appears to be influenced by both remodeler intrinsic and DNA sequence specific properties that interplay to define ATPase-catalyzed repositioning. Here we propose a successive three-step framework consisting of initiation, translocation and release steps to describe SNF2-type enzyme mediated nucleosome translocation along DNA. This conceptual framework helps resolve the apparent paradox between the high abundance of ATP-dependent remodelers per nucleus and the relative success of sequence-based predictions of nucleosome positioning in vivo.  相似文献   

11.
Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.  相似文献   

12.
DNA sequence patterns in precisely positioned nucleosomes   总被引:1,自引:0,他引:1  
Several investigators have recognized the importance of non-periodic DNA sequence information in determining the translational position of precisely positioned nucleosomes. The purpose of this study is to determine the extent of such information, in addition to the character of periodic information present. This is accomplished by examining the half-nucleosome DNA sequences of a considerable number of precisely positioned nucleosomes, and determining the probability of occurrence of each dinucleotide type as a function of position from the nucleosome center to the terminus (positions 0 to 72). By the nature of this procedure, no assumptions of periodicity are made. The results show the importance of several DNA sequence periodicities including 6-7, 10, and 21 base pairs, in addition to significant nonperiodic information. The results demonstrate that each dinucleotide type is unique in terms of its positional preference in precisely positioned nucleosomes (for example AA not equal to TT). The probabilities of occurrence for the dinucleotide types can be used to predict the translational positions of a number of observed nucleosomes.  相似文献   

13.
Nucleosomes, the basic repeat units of eukaryotic chromatin, have been suggested to influence the evolution of eukaryotic genomes, both by altering the propensity of DNA to mutate and by selection acting to maintain or exclude nucleosomes in particular locations. Contrary to the popular idea that nucleosomes are unique to eukaryotes, histone proteins have also been discovered in some archaeal genomes. Archaeal nucleosomes, however, are quite unlike their eukaryotic counterparts in many respects, including their assembly into tetramers (rather than octamers) from histone proteins that lack N- and C-terminal tails. Here, we show that despite these fundamental differences the association between nucleosome footprints and sequence evolution is strikingly conserved between humans and the model archaeon Haloferax volcanii. In light of this finding we examine whether selection or mutation can explain concordant substitution patterns in the two kingdoms. Unexpectedly, we find that neither the mutation nor the selection model are sufficient to explain the observed association between nucleosomes and sequence divergence. Instead, we demonstrate that nucleosome-associated substitution patterns are more consistent with a third model where sequence divergence results in frequent repositioning of nucleosomes during evolution. Indeed, we show that nucleosome repositioning is both necessary and largely sufficient to explain the association between current nucleosome positions and biased substitution patterns. This finding highlights the importance of considering the direction of causality between genetic and epigenetic change.  相似文献   

14.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

15.

Background

An organism’s DNA sequence is one of the key factors guiding the positioning of nucleosomes within a cell’s nucleus. Sequence-dependent bending anisotropy dictates how DNA is wrapped around a histone octamer. One of the best established sequence patterns consistent with this anisotropy is the periodic occurrence of AT-containing dinucleotides (WW) and GC-containing dinucleotides (SS) in the nucleosomal locations where DNA is bent in the minor and major grooves, respectively. Although this simple pattern has been observed in nucleosomes across eukaryotic genomes, its use for prediction of nucleosome positioning was not systematically tested.

Results

We present a simple computational model, termed the W/S scheme, implementing this pattern, without using any training data. This model accurately predicts the rotational positioning of nucleosomes both in vitro and in vivo, in yeast and human genomes. About 65 – 75% of the experimentally observed nucleosome positions are predicted with the precision of one to two base pairs. The program is freely available at http://people.rit.edu/fxcsbi/WS_scheme/. We also introduce a simple and efficient way to compare the performance of different models predicting the rotational positioning of nucleosomes.

Conclusions

This paper presents the W/S scheme to achieve accurate prediction of rotational positioning of nucleosomes, solely based on the sequence-dependent anisotropic bending of nucleosomal DNA. This method successfully captures DNA features critical for the rotational positioning of nucleosomes, and can be further improved by incorporating additional terms related to the translational positioning of nucleosomes in a species-specific manner.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-313) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures.

Results

Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature.

Conclusions

The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.
  相似文献   

17.
Several periodic motifs have been implicated in facilitating the bending of DNA around the histone core of the nucleosome. For example, di-nucleotides AA/TT/TA and GC at ∼10-bp periods, but offset by 5 bp, are found with higher-than-expected occurrences in aligned nucleosomal DNAs in vitro and in vivo. Additionally, regularly oscillating period-10 trinucleotide motifs non-T, A/T, G and their complements have been implicated in the formation of regular nucleosome arrays. The effects of these periodic motifs on nucleosome formation have not been systematically tested directly by competitive reconstitution assays. We show that, in general, none of these period-10 motifs, except TA, in certain sequence contexts, facilitates nucleosome formation. The influence of periodic TAs on nucleosome formation is appreciable; with some of the 200-bp DNAs out-competing bulk nucleosomal DNA by more than 400-fold. Only the nucleotides immediately flanking TA influence its nucleosome-forming ability. Period-10 TA, when flanked by a pair of permissive nucleotides, facilitates DNA bending through compression of the minor groove. The free energy change for nucleosome formation decreases linearly with the number of consecutive TAs, up to eight. We suggest how these data can be reconciled with previous findings.  相似文献   

18.
19.
20.
DNA sequence is an important determinant of the positioning, stability, and activity of nucleosomes, yet the molecular basis of these effects remains elusive. A "consensus DNA sequence" for nucleosome positioning has not been reported and, while certain DNA sequence preferences or motifs for nucleosome positioning have been discovered, how they function is not known. Here, we report that an unexpected observation concerning the reassembly of nucleosomes during salt gradient dialysis has allowed a breakthrough in our efforts to identify the nucleosomal locations of the DNA sequence motifs that dominate histone-DNA interactions and nucleosome positioning. We conclude that a previous selection experiment for high-affinity, nucleosome-forming DNA sequences exerted selective pressure chiefly on the central stretch of the nucleosomal DNA. This observation implies that algorithms for aligning the selected DNA sequences should seek to optimize the alignment over much less than the full 147 bp of nucleosomal DNA. A new alignment calculation implemented these ideas and successfully aligned 19 of the 41 sequences in a non-redundant database of selected high-affinity, nucleosome-positioning sequences. The resulting alignment reveals strong conservation of several stretches within a central 71 bp of the nucleosomal DNA. The alignment further reveals an inherent palindromic symmetry in the selected DNAs; it makes testable predictions of nucleosome positioning on the aligned sequences and for the creation of new positioning sequences, both of which are upheld experimentally; and it suggests new signals that may be important in translational nucleosome positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号