首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Tetherin/BST-2 is a recently-identified potent restriction factor in human cells that restricts HIV particle release following particle formation and budding at the plasma membrane. Vpu counteracts tetherin''s restriction of particle release in a manner that has not yet been fully defined. We recently identified calcium-modulating cyclophilin ligand (CAML) as a Vpu-interacting protein that also restricts particle release. We hypothesized that CAML may act to enhance tetherin-mediated restriction of particle release and thereby explain how two distinct factors could be responsible for Vpu-responsive restriction.

Methodology/Principal Findings

Endogenous levels of tetherin in human cells correlated well with their restriction pattern and responsiveness to Vpu, while levels of cellular CAML protein did not. Tetherin but not CAML was inducible by interferon in a wide variety of human cells. Stable depletion of human CAML in restrictive HeLa cells had no effect on cell surface levels of tetherin, and failed to relieve tetherin-mediated restriction. Stable depletion of tetherin from HeLa cells, in contrast, rendered HeLa cells permissive and Vpu-unresponsive. Tetherin but not CAML expression in permissive human cells rendered them restrictive and Vpu responsive. Depletion of CAML had no influence on cell surface levels of tetherin.

Conclusions/Significance

We conclude that tetherin restricts particle release and does not require CAML for this effect. Furthermore, these results do not support a major role for CAML in restricting HIV particle release in human cells.  相似文献   

2.
Tetherin is a membrane protein of unusual topology expressed from rodents to humans that accumulates enveloped virus particles on the surface of infected cells. However, whether this ‘tethering’ activity promotes or restricts retroviral spread during acute retrovirus infection in vivo is controversial. We report here the identification of a single nucleotide polymorphism in the Tetherin gene of NZW/LacJ (NZW) mice that mutated the canonical ATG start site to GTG. Translation of NZW Tetherin from downstream ATGs deleted a conserved dual-tyrosine endosomal sorting motif, resulting in higher cell surface expression and more potent inhibition of Friend retrovirus release compared to C57BL/6 (B6) Tetherin in vitro. Analysis of (B6×NZW)F1 hybrid mice revealed that increased Tetherin cell surface expression in NZW mice is a recessive trait in vivo. Using a classical genetic backcrossing approach, NZW Tetherin expression strongly correlated with decreased Friend retrovirus replication and pathogenesis. However, the protective effect of NZW Tetherin was not observed in the context of B6 Apobec3/Rfv3 resistance. These findings identify the first functional Tetherin polymorphism within a mammalian host, demonstrate that Tetherin cell surface expression is a key parameter for retroviral restriction, and suggest the existence of a restriction factor hierarchy to counteract pathogenic retrovirus infections in vivo.  相似文献   

3.
Infectious HIV-1 assembles in late endosomes in primary macrophages   总被引:27,自引:0,他引:27  
Although human immunodeficiency virus type 1 (HIV-1) is generally thought to assemble at the plasma membrane of infected cells, virions have been observed in intracellular compartments in macrophages. Here, we investigated virus assembly in HIV-1-infected primary human monocyte-derived macrophages (MDM). Electron microscopy of cryosections showed virus particles, identified by their morphology and positive labeling with antibodies to the viral p17, p24, and envelope proteins, in intracellular vacuoles. Immunolabeling demonstrated that these compartments contained the late endosomal marker CD63, which was enriched on vesicles within these structures and incorporated into the envelope of budding virions. The virus-containing vacuoles were also labeled with antibodies against LAMP-1, CD81, and CD82, which were also incorporated into the viral envelope. To assess the cellular source of infectious viruses derived from MDM, virus-containing media from infected cells were precipitated with specific antibodies. Only antibodies against antigens found in late endosomes precipitated infectious virus, whereas antibodies against proteins located primarily on the cell surface did not. Our data indicate that most of the infectious HIV produced by primary macrophages is assembled on late endocytic membranes and acquires antigens characteristic of this compartment. This notion has significant implications for understanding the biology of HIV and its cell-cell transmission.  相似文献   

4.
HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo.  相似文献   

5.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

6.
Jin J  Li F  Mothes W 《Journal of virology》2011,85(15):7672-7682
Retrovirus transmission via direct cell-cell contact is more efficient than diffusion through the extracellular milieu. This is believed to be due to the ability of viruses to efficiently coordinate several steps of the retroviral life cycle at cell-cell contact sites (D. C. Johnson et al., J. Virol. 76:1-8, 2002; D. M. Phillips, AIDS 8:719-731, 1994; Q. Sattenau, Nat. Rev. Microbiol. 6:815-826, 2008). Using the murine leukemia virus (MLV) as a model retrovirus, we have previously shown that interaction between viral envelope (Env) and receptor directs viral assembly to cell-cell contact sites to promote efficient viral spreading (J. Jin et al., PLoS Biol. 7:e1000163, 2009). In addressing the underlying mechanism, we observed that Env cytoplasmic tail directs this contact-induced polarized assembly. We present here the viral determinants in the Env cytoplasmic tail and Gag that are important in this process. A tyrosine residue within the cytoplasmic tail of Env was identified, which directs polarized assembly. MLV matrix-mediated membrane targeting is required for Gag recruitment to sites of cell-cell contact. Our results suggest that MLV polarized assembly is mediated by a direct or indirect interaction between both domains, thereby coupling Gag recruitment and virus assembly to Env accumulation at the cell-cell interface. In contrast, HIV Gag that assembles outside of cell-cell interfaces can subsequently be drawn into contact zones mediated by MLV Env and receptor, a finding that is consistent with the previously observed lateral movement of HIV into the virological synapse (W. Hubner et al., Science 323:1743-1747, 2009; D. Rudnicka et al., J. Virol. 83:6234-6246, 2009). As such, we observed two distinct modes of virus cell-to-cell transmission that involve either polarized or nonpolarized assembly, but both result in virus transmission.  相似文献   

7.
Virus transmission can occur either by a cell-free mode through the extracellular space or by cell-to-cell transmission involving direct cell-to-cell contact. The factors that determine whether a virus spreads by either pathway are poorly understood. Here, we assessed the relative contribution of cell-free and cell-to-cell transmission to the spreading of the human immunodeficiency virus (HIV). We demonstrate that HIV can spread by a cell-free pathway if all the steps of the viral replication cycle are efficiently supported in highly permissive cells. However, when the cell-free path was systematically hindered at various steps, HIV transmission became contact-dependent. Cell-to-cell transmission overcame barriers introduced in the donor cell at the level of gene expression and surface retention by the restriction factor tetherin. Moreover, neutralizing antibodies that efficiently inhibit cell-free HIV were less effective against cell-to-cell transmitted virus. HIV cell-to-cell transmission also efficiently infected target T cells that were relatively poorly susceptible to cell-free HIV. Importantly, we demonstrate that the donor and target cell types influence critically the extent by which cell-to-cell transmission can overcome each barrier. Mechanistically, cell-to-cell transmission promoted HIV spread to more cells and infected target cells with a higher proviral content than observed for cell-free virus. Our data demonstrate that the frequently observed contact-dependent spread of HIV is the result of specific features in donor and target cell types, thus offering an explanation for conflicting reports on the extent of cell-to-cell transmission of HIV.  相似文献   

8.
Virus assembly and interaction with host-cell proteins occur at length scales below the diffraction limit of visible light. Novel super-resolution microscopy techniques achieve nanometer resolution of fluorescently labeled molecules. The cellular restriction factor tetherin (also known as CD317, BST-2 or HM1.24) inhibits the release of human immunodeficiency virus 1 (HIV-1) through direct incorporation into viral membranes and is counteracted by the HIV-1 protein Vpu. For super-resolution analysis of HIV-1 and tetherin interactions, we established fluorescence labeling of HIV-1 proteins and tetherin that preserved HIV-1 particle formation and Vpu-dependent restriction, respectively. Multicolor super-resolution microscopy revealed important structural features of individual HIV-1 virions, virus assembly sites and their interaction with tetherin at the plasma membrane. Tetherin localization to micro-domains was dependent on both tetherin membrane anchors. Tetherin clusters containing on average 4 to 7 tetherin dimers were visualized at HIV-1 assembly sites. Combined biochemical and super-resolution analysis revealed that extended tetherin dimers incorporate both N-termini into assembling virus particles and restrict HIV-1 release. Neither tetherin domains nor HIV-1 assembly sites showed enrichment of the raft marker GM1. Together, our super-resolution microscopy analysis of HIV-1 interactions with tetherin provides new insights into the mechanism of tetherin-mediated HIV-1 restriction and paves the way for future studies of virus-host interactions.  相似文献   

9.
During the assembly of human immunodeficiency virus type 1 (HIV-1) particles, the tetraspanin CD63 can be incorporated into the viral membrane. Indeed, cell surface tetraspanin microdomains that include CD63 have been proposed as sites for virus release. In addition, antibodies against CD63 can inhibit HIV infection of macrophages. In this cell type, HIV assembles into intracellularly sequestered plasma membrane domains that contain several other tetraspanins, including CD81, CD9, and CD53. CD63 is recruited to this domain following HIV infection. Together, these observations suggest that CD63 may have some function in the assembly of infectious virus particles and/or the infectivity of assembled virions. Here we have used RNA interference to knock down CD63 expression in monocyte-derived primary macrophages. We show that in the absence of CD63, HIV assembly is quantitatively comparable to that seen in CD63-expressing macrophages and that virus assembly occurs on compartments positive for CD81, CD9, and CD53. Moreover, the infectivity of macrophage-derived virus is unaffected by the loss of CD63. Together, our results indicate that at least in tissue culture, CD63 expression is not required for either the production or the infectivity of HIV-1.  相似文献   

10.
An increasing number of broadly neutralizing antibodies (bnAbs) are considered leads for HIV-1 vaccine development and novel therapeutics. Here, we systematically explored the capacity of bnAbs to neutralize HIV-1 prior to and post-CD4 engagement and to block HIV-1 cell-cell transmission. Cell-cell spread is known to promote a highly efficient infection with HIV-1 which can inflict dramatic losses in neutralization potency compared to free virus infection. Selection of bnAbs that are capable of suppressing HIV irrespective of the transmission mode therefore needs to be considered to ascertain their in vivo activity in therapeutic use and vaccines. Employing assay systems that allow for unambiguous discrimination between free virus and cell-cell transmission to T cells, we probed a panel of 16 bnAbs for their activity against 11 viruses from subtypes A, B and C during both transmission modes. Over a wide range of bnAb-virus combinations tested, inhibitory activity against HIV-1 cell-cell transmission was strongly decreased compared to free virus transmission. Activity loss varied considerably between virus strains and was inversely associated with neutralization of free virus spread for V1V2- and V3-directed bnAbs. In rare bnAb-virus combinations, inhibition for both transmission modes was comparable but no bnAb potently blocked cell-cell transmission across all probed virus strains. Mathematical analysis indicated an increased probability of bnAb resistance mutations to arise in cell-cell rather than free virus spread, further highlighting the need to block this pathway. Importantly, the capacity to efficiently neutralize prior to CD4 engagement correlated with the inhibition efficacy against free virus but not cell-cell transmitted virus. Pre-CD4 attachment activity proved strongest amongst CD4bs bnAbs and varied substantially for V3 and V1V2 loop bnAbs in a strain-dependent manner. In summary, bnAb activity against divergent viruses varied depending on the transmission mode and differed depending on the window of action during the entry process, underscoring that powerful combinations of bnAbs are needed for in vivo application.  相似文献   

11.
Macrophages are long-lived target cells for HIV infection and are considered viral reservoirs. HIV assembly in macrophages occurs in virus-containing compartments (VCCs) in which virions accumulate and are stored. The regulation of the trafficking and release of these VCCs remains unknown. Using high resolution light and electron microscopy of HIV-1–infected primary human macrophages, we show that the spatial distribution of VCCs depended on the microtubule network and that VCC-limiting membrane was closely associated with KIF3A+ microtubules. Silencing KIF3A strongly decreased virus release from HIV-1–infected macrophages, leading to VCC accumulation intracellularly. Time-lapse microscopy further suggested that VCCs and associated KIF3A move together along microtubules. Importantly, KIF3A does not play a role in HIV release from T cells that do not possess VCCs. These results reveal that HIV-1 requires the molecular motor KIF3 to complete its cycle in primary macrophages. Targeting this step may lead to novel strategies to eliminate this viral reservoir.  相似文献   

12.
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin‐enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV‐1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV‐1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post‐assembly events, i.e., inhibition of virus release by a raft‐associated protein BST‐2/tetherin and cell‐to‐cell HIV‐1 transmission at virological synapses.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) assembly, budding, and release occur mostly at the plasma membrane in T lymphocytes as well as in established nonlymphoid cell lines, while in macrophages these processes occur primarily in intracellular compartments that harbor late endosomal/multivesicular body (LE/MVB) markers, including human leukocyte antigen DR (HLA-DR). Major histocompatibility complex class II molecules (MHC-II), which are expressed in macrophages and activated T cells, have been previously reported to induce the formation of multilaminar and multivesicular endocytic MHC-II-like structures analogous to MVB upon their expression in HEK 293 cells. Here, we have examined the role of MHC-II in HIV-1 Gag targeting as well as in virus assembly and release. Expression of HLA-DR in nonlymphoid cell lines induced a relocation of Gag to intracellular compartments that harbored LE/MVB markers and increased the accumulation of viral particles assembling intracellularly. Consequently, viral production and release from the cell surface was found to be substantially decreased in HLA-DR-expressing cells. This process was specific, since it was not observed with HLA-DR molecules lacking their cytoplasmic tails, nor with structurally related but functionally distinct MHC-II molecules such as HLA-DM or HLA-DO. Importantly, virus released intracellularly in HLA-DR-expressing cells retained infectivity. Overall, these results suggest a role of MHC-II molecules in promoting HIV-1 assembly and budding to LE/MVB and raise the possibility that this activity might be part of a normal pathway of virus production in cell types physiologically expressing MHC-II molecules, such as macrophages.  相似文献   

14.
束缚蛋白(tetherin)是一种具有特殊功能的蛋白质,它可抑制包膜病毒从感染细胞中释放。研究发现,人的束缚蛋白可将新生的HIV-1病毒颗粒固定在细胞表面,同时,它还可以减小HIV-1子代病毒的传染性。本文将主要从分子结构、抗HIV-1病毒的作用机制和在HIV传播中的作用三方面来阐述束缚蛋白抗病毒作用的最新研究进展。  相似文献   

15.
Plasmacytoid dendritic cells (pDCs) constitute a major source of type-I interferon (IFN-I) production during acute HIV infection. Their activation results primarily from TLR7-mediated sensing of HIV-infected cells. However, the interactions between HIV-infected T cells and pDCs that modulate this sensing process remain poorly understood. BST2/Tetherin is a restriction factor that inhibits HIV release by cross-linking virions onto infected cell surface. BST2 was also shown to engage the ILT7 pDC-specific inhibitory receptor and repress TLR7/9-mediated IFN-I production by activated pDCs. Here, we show that Vpu, the HIV-1 antagonist of BST2, suppresses TLR7-mediated IFN-I production by pDC through a mechanism that relies on the interaction of BST2 on HIV-producing cells with ILT7. Even though Vpu downregulates surface BST2 as a mean to counteract the restriction on HIV-1 release, we also find that the viral protein re-locates remaining BST2 molecules outside viral assembly sites where they are free to bind and activate ILT7 upon cell-to-cell contact. This study shows that through a targeted regulation of surface BST2, Vpu promotes HIV-1 release and limits pDC antiviral responses upon sensing of infected cells. This mechanism of innate immune evasion is likely to be important for an efficient early viral dissemination during acute infection.  相似文献   

16.
17.
Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi''s sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition.  相似文献   

18.
Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs.  相似文献   

19.
Tetherin/BST2 was identified in 2008 as the cellular factor responsible for restricting HIV-1 replication at a very late stage in the lifecycle. Tetherin acts to retain virion particles on the plasma membrane after budding has been completed. Infected cells that express large amounts of tetherin display large strings of HIV virions that remain attached to the plasma membrane. Vpu is an HIV-1 accessory protein that specifically counteracts the restriction to virus release contributed by tetherin. Tetherin is an unusual Type II transmembrane protein that contains a GPI anchor at its C-terminus and is found in lipid rafts. The leading model for the mechanism of action of tetherin is that it functions as a direct physical tether bridging virions and the plasma membrane. However, evidence that tetherin functions as a physical tether has thus far been indirect. Here we demonstrate by biochemical and immunoelectron microscopic methods that endogenous tetherin is present on the viral particle and forms a bridge between virion particles and the plasma membrane. Endogenous tetherin was found on HIV particles that were released by partial proteolytic digestion. Immunoelectron microscopy performed on HIV-infected T cells demonstrated that tetherin forms an apparent physical link between virions and connects patches of virions to the plasma membrane. Linear filamentous strands that were highly enriched in tetherin bridged the space between some virions. We conclude that tetherin is the physical tether linking HIV-1 virions and the plasma membrane. The presence of filaments with which multiple molecules of tetherin interact in connecting virion particles is strongly suggested by the morphologic evidence.  相似文献   

20.
The Vpu accessory protein promotes HIV-1 release by counteracting Tetherin/BST-2, an interferon-regulated restriction factor, which retains virions at the cell-surface. Recent reports proposed β-TrCP-dependent proteasomal and/or endo-lysosomal degradation of Tetherin as potential mechanisms by which Vpu could down-regulate Tetherin cell-surface expression and antagonize this restriction. In all of these studies, Tetherin degradation did not, however, entirely account for Vpu anti-Tetherin activity. Here, we show that Vpu can promote HIV-1 release without detectably affecting Tetherin steady-state levels or turnover, suggesting that Tetherin degradation may not be necessary and/or sufficient for Vpu anti-Tetherin activity. Even though Vpu did not enhance Tetherin internalization from the plasma membrane (PM), it did significantly slow-down the overall transport of the protein towards the cell-surface. Accordingly, Vpu expression caused a specific removal of cell-surface Tetherin and a re-localization of the residual pool of Tetherin in a perinuclear compartment that co-stained with the TGN marker TGN46 and Vpu itself. This re-localization of Tetherin was also observed with a Vpu mutant unable to recruit β-TrCP, suggesting that this activity is taking place independently from β-TrCP-mediated trafficking and/or degradation processes. We also show that Vpu co-immunoprecipitates with Tetherin and that this interaction involves the transmembrane domains of the two proteins. Importantly, this association was found to be critical for reducing cell-surface Tetherin expression, re-localizing the restriction factor in the TGN and promoting HIV-1 release. Overall, our results suggest that association of Vpu to Tetherin affects the outward trafficking and/or recycling of the restriction factor from the TGN and as a result promotes its sequestration away from the PM where productive HIV-1 assembly takes place. This mechanism of antagonism that results in TGN trapping is likely to be augmented by β-TrCP-dependent degradation, underlining the need for complementary and perhaps synergistic strategies to effectively counteract the powerful restrictive effects of human Tetherin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号