首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic analysis of nucleoside transport in Leishmania donovani.   总被引:2,自引:2,他引:2       下载免费PDF全文
Genetic dissection of nucleoside transport in Leishmania donovani indicates that the insect vector form of these parasites possesses two biochemically distinct nucleoside transport systems. The first transports inosine, guanosine, and formycin B, and the second transports pyrimidine nucleosides and the adenosine analogs, formycin A and tubercidin. Adenosine is transported by both systems. A mutant, FBD5, isolated by virtue of its resistance to growth inhibition by 5 microM formycin B, cannot efficiently transport inosine, guanosine, or formycin B. This cell line is also cross-resistant to growth inhibition by a spectrum of cytotoxic analogs of inosine and guanosine. A second parasite mutant, TUBA5, isolated for its resistance to 20 microM tubercidin, cannot take up from the culture medium radiolabeled tubercidin, formycin A, uridine, cytidine, or thymidine. Both the FBD5 and the TUBA5 cell lines have about a 50% reduced capacity to take up adenosine, indicating that adenosine is transported by both systems. A tubercidin-resistant clonal derivative of FBD5, FBD5-TUB, has acquired the combined biochemical phenotype of each single mutant. The wild-type and mutant cell lines transport purine bases and uracil with equal efficiency. Mutational analysis of the relative growth sensitivities to cytotoxic nucleoside analogs and the selective capacities to take up exogenous radiolabeled nucleosides from the culture medium have enabled us to define genetically the multiplicity and substrate specificities of the nucleoside transport systems in L. donovani promastigotes.  相似文献   

2.
Protozoan parasites of the Leishmania genus express the metabolic machinery to synthesize pyrimidine nucleotides via both de novo and salvage pathways. To evaluate the relative contributions of pyrimidine biosynthesis and salvage to pyrimidine homeostasis in both life cycle stages of Leishmania donovani, individual mutant lines deficient in either carbamoyl phosphate synthetase (CPS), the first enzyme in pyrimidine biosynthesis, uracil phosphoribosyltransferase (UPRT), a salvage enzyme, or both CPS and UPRT were constructed. The Δcps lesion conferred pyrimidine auxotrophy and a growth requirement for medium supplementation with one of a plethora of pyrimidine nucleosides or nucleobases, although only dihydroorotate or orotate could circumvent the pyrimidine auxotrophy of the Δcps/Δuprt double knockout. The Δuprt null mutant was prototrophic for pyrimidines but could not salvage uracil or any pyrimidine nucleoside. The capability of the Δcps parasites to infect mice was somewhat diminished but still robust, indicating active pyrimidine salvage by the amastigote form of the parasite, but the Δcps/Δuprt mutant was completely attenuated with no persistent parasites detected after a 4-week infection. Complementation of the Δcps/Δuprt clone with either CPS or UPRT restored infectivity. These data establish that an intact pyrimidine biosynthesis pathway is essential for the growth of the promastigote form of L. donovani in culture, that all uracil and pyrimidine nucleoside salvage in the parasite is mediated by UPRT, and that both the biosynthetic and salvage pathways contribute to a robust infection of the mammalian host by the amastigote. These findings impact potential therapeutic design and vaccine strategies for visceral leishmaniasis.  相似文献   

3.
To differentiate strains of Leishmania donovani, allelic markers at the DNA level were developed by sequence-confirmed amplified region analysis (SCAR). Homologous fragments from different strains of L. donovani were amplified by PCR using random primers and subsequently screened for single-strand conformation polymorphisms. Direct sequencing revealed 55 sequence polymorphisms in eight co-dominant DNA markers; 38 of them were single point mutations. Heterozygosity was evident for 69% and fixed heterozygosity for 25% of all polymorphisms. At most polymorphic sites one of the segregation genotypes was missing. Nineteen unique multilocus genotypes were identified among 29 strains of L. donovani. One genotype was represented by eight Sudanese strains; also two strains from Sudan as well as two strains from Kenya, respectively, shared identical genotypes. All other strains had individual multilocus genotypes. Calculation of genetic distances showed a correlation between multilocus genotypes and the geographical origin of these strains. African strains were found in one well-supported cluster with Kenyan and Sudanese strains clearly separated. SCAR markers seem to represent a random sample of neutral genetic variation present in natural populations. They are co-dominant because they can detect all possible allele combinations in a diploid organism and may, therefore, be very useful for population genetic analysis in Leishmania.  相似文献   

4.
Paromomycin has recently been introduced for the treatment of visceral leishmaniasis and emergence of drug resistance can only be appropriately judged upon its long term routine use in the field. Understanding alterations in parasite behavior linked to paromomycin-resistance may be essential to assess the propensity for emergence and spread of resistant strains. A standardized and integrated laboratory approach was adopted to define and assess parasite fitness of both promastigotes and amastigotes using an experimentally induced paromomycin-resistant Leishmania donovani strain and its paromomycin-susceptible parent wild-type clinical isolate. Primary focus was placed on parasite growth and virulence, two major components of parasite fitness. The combination of in vitro and in vivo approaches enabled detailed comparison of wild-type and resistant strains for which no differences could be demonstrated with regard to promastigote growth, metacyclogenesis, in vitro infectivity, multiplication in primary peritoneal mouse macrophages and infectivity for Balb/c mice upon infection with 2 x 107 metacyclic promastigotes. Monitoring of in vitro intracellular amastigote multiplication revealed a consistent decrease in parasite burden over time for both wild-type and resistant parasites, an observation that was subsequently also confirmed in a larger set of L. donovani clinical isolates. Though the impact of these findings should be further explored, the study results suggest that the epidemiological implications of acquired paromomycin-resistance may remain minimal other than the loss of one of the last remaining drugs effective against visceral leishmaniasis.  相似文献   

5.
6.
We have earlier reported antileishmanial activity of hypericin by spermidine starvation. In the current report, we have used label free proteome quantitation approach to identify differentially modulated proteins after hypericin treatment. A total of 141 proteins were found to be differentially regulated with ANOVA P value less than 0.05 in hypericin treated Leishmania promastigotes. Differentially modulated proteins have been broadly classified under nine major categories. Increase in ribosomal protein S7 protein suggests the repression of translation. Inhibition of proteins related to ubiquitin proteasome system, RNA binding protein and translation initiation factor also suggests altered translation. We have also observed increased expression of Hsp 90, Hsp 83–1 and stress inducible protein 1. Significant decreased level of cyclophilin was observed. These stress related protein could be cellular response of the parasite towards hypericin induced cellular stress. Also, defective metabolism, biosynthesis and replication of nucleic acids, flagellar movement and signalling of the parasite were observed as indicated by altered expression of proteins involved in these pathways. The data was analyzed rigorously to get further insight into hypericin induced parasitic death.  相似文献   

7.
8.
Characterization of strains of Leishmania donovani   总被引:11,自引:0,他引:11  
  相似文献   

9.
10.
Characterization of Leishmania donovani acid phosphatases   总被引:7,自引:0,他引:7  
A crude membrane fraction from promastigotes of Leishmania donovani grown in a liquid culture medium containing 20% fetal calf serum was prepared by freeze-thawing, centrifugation (200,000 X g, 30 min), and extraction with 2% (w/v) sodium cholate. After removal of the bile salt by chromatography on a Sephadex G-75 column, the solubilized membrane protein fraction, rich in acid phosphatase activity, was chromatographed on columns containing concanavalin A-Sepharose, QAE-Sephadex, and Sephadex G-150 and G-100. Three distinct acid phosphatases were resolved: the major phosphatase activity (70% of the total) was L-(+)-tartrate-resistant (designated ACP-P1) and corresponds to the acid phosphatase localized to the outer surface of the parasite's plasma membrane; the other two phosphatases (ACP-P2 and ACP-P3) account for the remaining 30% of the particulate acid phosphatase activity, and both of these enzymes are L-(+)-tartrate-sensitive. Using a combination of sucrose density gradient centrifugation, gel filtration chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was determined that ACP-P1 is a 128,000-dalton protein composed of two subunits of 65,000-68,000 daltons. ACP-P1 has an isoelectric point of 4.1, a pH optimum of 5.5, hydrolyzes fructose 1,6-diphosphate, but no other sugar phosphates and dephosphorylates phosphotyrosine, yeast mannan, and the phosphorylated form of rat liver pyruvate kinase. ACP-P2 (pI, 5.4) and ACP-P3 (pI, 7.1) with molecular masses of 132,000 and 108,000 daltons, respectively, are both tartrate-sensitive and are distinguished from each other on the basis of their sensitivity to inhibition by polyanionic molybdenum complexes. These two phosphatases also have their pH optima in the pH 5.0-6.0 range, but have a considerably broader substrate specificity than ACP-P1.  相似文献   

11.
ABSTRACT. Leishmania donovani promastigotes were collected, washed, resuspended in buffer, and assayed for sucrase activity. No activity was observed in the intact washed cells, but activity was measurable when the cells were permeabilized with Triton X-100. Intracellular sucrase activity was highest in promastigotes grown at pH 7.4, somewhat lower in promastigotes grown at pH 5.5, and significantly lower in "amastigotes" grown at pH 5.5. No trehalase, lactase, or maltase activities were observed. Assay of the medium in which the cells had grown showed that most the sucrase activity was extracellular, i.e. was secreted into the medium during growth.  相似文献   

12.
ABSTRACT. The metabolism of leucine by Leishmania donovani was investigated. Washed promastigotes were incubated with (1-14C]-or [U-14C]leucine or [1 -14C]α-ketoisocaproate (KIC) and 14C02 release was measured. The amount of KIC-derived acetyl-CoA oxidized in the citric acid cycle was computed. Promastigotes from mid-stationary phase cultures oxidized each of these labeled substrates less rapidly than cells from late log phase cultures, and significantly less acetyl-CoA derived from KIC oxidation was oxidized in the citric acid cycle. Glucose was a stronger inhibitor than was acetate of CO2 formation in the citric acid cycle in log phase promastigotes, but the reverse was observed in cells from mid-stationary phase. Alanine also inhibited leucine catabolism, but glutamate had little effect. Acute hypo-osmotic stress did not affect leucine catabolism, but hyper-osmotic stress caused appreciable inhibition of leucine oxidation. Cells grown under hypo-or hyper-osmotic conditions showed no changes in the effects of hypo-or hyper-osmotic stress on leucine catabolism, i.e. L. donovani is not an osmoconformer with respect to leucine metabolism. Leucine utilization in L. donovani was insensitive to a number of drugs that affect leucine metabolism in mammalian cells, indicating that the leucine pathway in L. donovani is not regulated in the same manner as in mammalian cells.  相似文献   

13.
14.
Protozoan parasites of the genus Leishmania adapt to their arthropod and vertebrate hosts through the development of defined life cycle stages. Stage differentiation is triggered by environmental stress factors and has been linked to parasite chaperone activities. Using a null mutant approach we previously revealed important, nonredundant functions of the cochaperone cyclophilin 40 in L. donovani‐infected macrophages. Here, we characterized in more detail the virulence defect of cyp40?/? null mutants. In vitro viability assays, infection tests using macrophages, and mixed infection experiments ruled out a defect of cyp40?/? parasites in resistance to oxidative and hydrolytic stresses encountered inside the host cell phagolysosome. Investigation of the CyP40‐dependent proteome by quantitative 2D‐DiGE analysis revealed up regulation of various stress proteins in the null mutant, presumably a response to compensate for the lack of CyP40. Applying transmission electron microscopy we showed accumulation of vesicular structures in the flagellar pocket of cyp40?/? parasites that we related to a significant increase in exosome production, a phenomenon previously linked to the parasite stress response. Together these data suggest that cyp40?/? parasites experience important intrinsic homeostatic stress that likely abrogates parasite viability during intracellular infection.  相似文献   

15.
BackgroundVisceral leishmaniasis (VL) caused by the protozoan parasite Leishmania donovani causes severe disease. Age appears to be critical in determining the clinical outcome of VL and at present there is no effective vaccine available against VL for any age group. Previously, we showed that genetically modified live attenuated L. donovani parasites (LdCen-/-) induced a strong protective innate and adaptive immune response in young mice. In this study we analyzed LdCen-/- parasite mediated modulation of innate and adaptive immune response in aged mice (18 months) and compared to young (2 months) mice.MethodologyAnalysis of innate immune response in bone marrow derived dendritic cells (BMDCs) from both young and aged mice upon infection with LdCen-/- parasites, showed significant enhancement of innate effector responses, which consequently augmented CD4+ Th1 cell effector function compared to LdWT infected BMDCs in vitro. Similarly, parasitized splenic dendritic cells from LdCen-/- infected young and aged mice also revealed induction of proinflammatory cytokines (IL-12, IL-6, IFN-γ and TNF) and subsequent down regulation of anti-inflammatory cytokine (IL-10) genes compared to LdWT infected mice. We also evaluated in vivo protection of the LdCen-/- immunized young and aged mice against virulent L. donovani challenge. Immunization with LdCen-/- induced higher IgG2a antibodies, lymphoproliferative response, pro- and anti-inflammatory cytokine responses and stimulated splenocytes for heightened leishmanicidal activity associated with nitric oxide production in young and aged mice. Furthermore, upon virulent L. donovani challenge, LdCen-/- immunized mice from both age groups displayed multifunctional Th1-type CD4 and cytotoxic CD8 T cells correlating to a significantly reduced parasite burden in the spleen and liver compared to naïve mice. It is interesting to note that even though there was no difference in the LdCen-/- induced innate response in dendritic cells between aged and young mice; the adaptive response specifically in terms of T cell and B cell activation in aged animals was reduced compared to young mice which correlated with less protection in old mice compared to young mice.ConclusionsTaken together, LdCen-/- immunization induced a significant but diminished host protective response in aged mice after challenge with virulent L. donovani parasites compared to young mice.  相似文献   

16.
The secreted acid phosphatase (SAcP) of L.donovani is a heterogeneous glycoprotein that displays a wide array of N- and O-linked glycosylations. The O-linked sugars are of particular interest due to their similarity to the phosphoglycan structures of the major lipophosphoglycan surface antigen and released phosphoglycan (Turco et al., 1987; Greis et al., 1992). This study describes a structural analysis of the SAcP O-linked glycosylations using mass spectroscopy, amino acid sequencing, and enzymatic carbohydrate sequencing. Analysis of glycan chain lengths and peptide glycosylation site distribution was performed, revealing that the average O-linked structure was approximately 32 repeat units in length. Amino acid sequence analysis of glycosylated peptides showed that phosphoglycosylations did not occur randomly but were localized to specific serine residues within an array of degenerate serine/threonine-rich repeat sequences localized in the C-terminus. No evidence was obtained for modification of threonine residues. The observed pattern suggested that a consensus sequence may exist for localization of phosphoglycan structures.  相似文献   

17.
We describe an unprecedented finding of an open reading frame present in the variable region in one of the minicircle sequence classes of a human pathogenic strain of Leishmania donovani (MHOM/IN/90/RMRI 68) which is transcribed and translated. The encoded protein showed homologies to known transport proteins.  相似文献   

18.
The metabolism of leucine by Leishmania donovani was investigated. Washed promastigotes were incubated with [1-14C]- or [U-14C]leucine or [1-14C]alpha-ketoisocaproate (KIC) and 14CO2 release was measured. The amount of KIC-derived acetyl-CoA oxidized in the citric acid cycle was computed. Promastigotes from mid-stationary phase cultures oxidized each of these labeled substrates less rapidly than cells from late log phase cultures, and significantly less acetyl-CoA derived from KIC oxidation was oxidized in the citric acid cycle. Glucose was a stronger inhibitor than was acetate of CO2 formation in the citric acid cycle in log phase promastigotes, but the reverse was observed in cells from mid-stationary phase. Alanine also inhibited leucine catabolism, but glutamate had little effect. Acute hypo-osmotic stress did not affect leucine catabolism, but hyper-osmotic stress caused appreciable inhibition of leucine oxidation. Cells grown under hypo- or hyper-osmotic conditions showed no changes in the effects of hypo- or hyper-osmotic stress on leucine catabolism, i.e. L. donovani is not an osmoconformer with respect to leucine metabolism. Leucine utilization in L. donovani was insensitive to a number of drugs that affect leucine metabolism in mammalian cells, indicating that the leucine pathway in L. donovani is not regulated in the same manner as in mammalian cells.  相似文献   

19.
ABSTRACT. An enzyme that oxidizes ethanol to acetaldehyde in the presence of NADP (but not NAD) and reduces acetaldehyde to ethanol in the presence of NADPH (but not NADH) is present in Leishmania donovani promastigotes. The activity is present only in the supernatant fraction obtained from sonication of the cells and high speed centrifugation. The Km and Vm values were evaluated for propanol and propionaldehyde as well as for ethanol and acetaldehyde in cells obtained from late log and 3-day stationary phase cultures. There was no significant change in Km or Vm values for any of these four substrates with culture age. Since the Km values for ethanol and propanol are much higher than for the corresponding aldehydes and higher than any physiological range of alcohol concentration likely to be encountered, this enzyme is considered to function as an aldehyde reductase.  相似文献   

20.
Heme metabolism in promastigotes of Leishmania donovani   总被引:3,自引:0,他引:3  
Promastigotes of Leishmania donovani (Dd-8 strain) showed presence of important key enzymes of heme synthesizing (d-aminolevulinic acid synthase and ferrochelatase) and degrading (heme oxygenase and biliverdin reductase) systems, classical leishmanicidal drugs viz allopurinol, amphotericin B, pentamidine and CDRI compound 93/202 inhibited the heme oxygenase activity of the parasite, whereas, -aminolevulinic acid synthase activity practically remained unaffected. The Km, Vmax ad pH values of heme oxygenase of promastigotes were found to be 1666 M hemin, 625 nmol of bilirubin formed h-1 mg protein-1 and 7.5 respectively. The findings suggest the presence and importance of heme metabolism in the de novo synthesis of different hemoproteins of the Leishmania parasite as well as the detoxification and its defence against biological insults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号