首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes.  相似文献   

2.
生长分化因子9基因及其在生殖中的作用   总被引:1,自引:0,他引:1  
生长分化因子9是卵母细胞分泌的一种生长因子,它对卵泡的生长分化起着重要作用.文章介绍了生长分化因子9的结构、功能和调控,生长分化因子9基因的克隆及基因结构、发育性表达、定位和多态性,并讨论了该基因与哺乳动物繁殖性能的关系.  相似文献   

3.
Insulin-like growth factors (IGFs) are key regulators of development, growth, and longevity. In most vertebrate species including humans, there is one IGF-1 gene and one IGF-2 gene. Here we report the identification and functional characterization of 4 distinct IGF genes (termed as igf-1a, -1b, -2a, and -2b) in zebrafish. These genes encode 4 structurally distinct and functional IGF peptides. IGF-1a and IGF-2a mRNAs were detected in multiple tissues in adult fish. IGF-1b mRNA was detected only in the gonad and IGF-2b mRNA only in the liver. Functional analysis showed that all 4 IGFs caused similar developmental defects but with different potencies. Many of these embryos had fully or partially duplicated notochords, suggesting that an excess of IGF signaling causes defects in the midline formation and an expansion of the notochord. IGF-2a, the most potent IGF, was analyzed in depth. IGF-2a expression caused defects in the midline formation and expansion of the notochord but it did not alter the anterior neural patterning. These results not only provide new insights into the functional conservation and divergence of the multiple igf genes but also reveal a novel role of IGF signaling in midline formation and notochord development in a vertebrate model.  相似文献   

4.
Plant ascorbate peroxidases (APXs), enzymes catalyzing the dismutation of H2O2 into H2O and O2, play an important role in reactive oxygen species homeostasis in plants. The rice genome has eight OsAPXs, but their physiological functions remain to be determined. In this report, we studied the function of OsAPX2 gene using a T-DNA knockout mutant under the treatment of drought, salt and cold stresses. The Osapx2 knockout mutant was isolated by a genetic screening of a rice T-DNA insertion library under 20% PEG-2000 treatment. Loss of function in OsAPX2 affected the growth and development of rice seedlings, resulting in semi-dwarf seedlings, yellow-green leaves, leaf lesion mimic and seed sterility. OsAPX2 expression was developmental- and spatial-regulated, and was induced by drought, salt, and cold stresses. Osapx2 mutants had lower APX activity and were sensitive to abiotic stresses; overexpression of OsAPX2 increased APX activity and enhanced stress tolerance. H2O2 and MDA levels were high in Osapx2 mutants but low in OsAPX2-OX transgenic lines relative to wild-type plants after stress treatments. Taken together, the cytosolic ascorbate peroxidase OsAPX2 plays an important role in rice growth and development by protecting the seedlings from abiotic stresses through scavenging reactive oxygen species.  相似文献   

5.
Proteins interact in complex protein–protein interaction (PPI) networks whose topological properties—such as scale-free topology, hierarchical modularity, and dissortativity—have suggested models of network evolution. Currently preferred models invoke preferential attachment or gene duplication and divergence to produce networks whose topology matches that observed for real PPIs, thus supporting these as likely models for network evolution. Here, we show that the interaction density and homodimeric frequency are highly protein age–dependent in real PPI networks in a manner which does not agree with these canonical models. In light of these results, we propose an alternative stochastic model, which adds each protein sequentially to a growing network in a manner analogous to protein crystal growth (CG) in solution. The key ideas are (1) interaction probability increases with availability of unoccupied interaction surface, thus following an anti-preferential attachment rule, (2) as a network grows, highly connected sub-networks emerge into protein modules or complexes, and (3) once a new protein is committed to a module, further connections tend to be localized within that module. The CG model produces PPI networks consistent in both topology and age distributions with real PPI networks and is well supported by the spatial arrangement of protein complexes of known 3-D structure, suggesting a plausible physical mechanism for network evolution.  相似文献   

6.
7.
Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.  相似文献   

8.
9.
10.
11.
Grapevine is an important fruit crop that has undergone a long history of evolution. Analysis of the whole genome sequence of grapevine has revealed presence of an early palaeo-hexaploid along with three complements. Thus, gene duplication and genome expansion are common in this genome. In this study, we identified 17,922 duplicated genes in the whole grapevine genome. Among these, 2,039; 628; 1,428; 722; and 2,942 were identified respectively as produced by genome-wide, tandem, proximal, retrotransposed, and DNA-based transposed duplications. Analyses of the evolutionary patterns for different types of duplication using non-synonymous and synonymous substitution rates uncovered a series of underlying rules. Thereafter, all the grapevine genes were classified into families, and the contributions of different types of duplication to the expansion of large families were revealed. No duplication type was solely responsible for the formation of any large gene family, but some families showed enrichment of a special type of duplication. On the basis of this study, we believe that uncovering the underlying rules for gene duplications, expansions of gene families, and their evolutionary styles will contribute significantly to a comprehensive understanding of the features of the grapevine genome.  相似文献   

12.

Background

Insulin-like growth factor binding protein-2 (IGFBP-2) is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers.

Methodology/Principal Findings

We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity.

Conclusions/Significance

These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits growth and development primarily by binding to and inhibiting IGF actions in vivo. The duplicated IGFBP-2 genes may provide additional flexibility in the regulation of IGF activities.  相似文献   

13.
14.
15.
Abstract A general correlation between neural expression and negative charge in isozymes suggests charge represents an adaptation to the neural environment. Interestingly, a notable exception exists in teleost fish. Two cytosolic malate dehydrogenase (MDH) isozymes have different spatial expression patterns in certain fishes: one is expressed in all tissues and the second is expressed primarily in the eye and skeletal muscle. While the neural MDH isozyme is negatively charged, the difference in charge between the two isozymes is not as pronounced as that observed in other gene families (e.g., triosephosphate isomerase and lactate dehydrogenase). Most tetrapods express a single cytosolic MDH isozyme, and it has been demonstrated recently that the pair of isozymes found in teleosts results from a gene duplication sometime after the separation of teleosts and tetrapods, although the exact timing of this duplication has not been inferred. Phylogenetic analyses suggest that the duplication of teleost isozymes occurred during the radiation of actinopterygian fish, consistent with the timing of duplication at other loci. Using inferred amino acid sequences, we examine the pattern of change following the duplication and across the rest of the MDH gene tree. Comparison between the MDH gene family and another gene family that shows a larger charge differential among members (triosephosphate isomerase) indicates that the smaller charge difference between MDH isozymes is best explained by greater constraint on amino acid change directly following the duplication, not greater constraint across the entire gene tree. This difference in constraint might result from the wider pattern of expression of the “neural” MDH isozyme.  相似文献   

16.
17.
18.
19.
The BMP15 gene is a growth factor and a member of the transforming growth factor β (TGFβ) superfamily, specifically expressed in oocytes. In the present study, polymorphism of BMP15 gene exon 1 was studied using single strand conformational polymorphism (SSCP) and direct DNA sequencing methods in 170 Mehraban and Lori sheep ewes. A 231-bp fragment in BMP15 exon 1 was amplified by PCR reactions. Two genotypes (GG and AG) with a new point mutation at position 121 bp of the studied fragment (c.379G>A in reference GenBank number AF236078.1 sequence), deducing an amino acid exchange in the codified amino acid sequence (p.Glu41Lys) were identified in the studied populations. The AG and GG frequencies were 74.4% and 25.6% in Mehraban and 44.7% and 55.3% in Lori sheep, respectively. Frequencies of the A and G alleles were 37.2% and 62.8% in Mehraban and 22.4% and 77.6% in Lori sheep, respectively. Two different secondary structures of protein were predicted for encoded precursor protein. The genotypes GG and AG did not have any significant association with the studied reproductive traits, but the AA genotype is likely to have a lethal or sterility effect.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号