首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear reprogramming by human embryonic stem cells   总被引:3,自引:0,他引:3  
Surani MA 《Cell》2005,122(5):653-654
Embryonic stem cells have two unique properties. They are capable of indefinite self-renewal and, being pluripotent, they can differentiate into all possible cell types, including germ cells. A new study by Cowan et al. (2005) published in Science shows that human embryonic stem cells are able to reprogram the nuclei of fully differentiated human somatic cells, apparently conferring on them a pluripotent state.  相似文献   

2.
3.
4.
5.
体细胞通过重编程转变成其他类型的细胞,在再生医学方面具有重要的应用前景。细胞重编程的方法主要有体细胞核移植、细胞融合、细胞提取物诱导、限定因子诱导等,这些方法可以不同程度地改变细胞命运。最近,限定因子诱导的多能干细胞(induced pluripotent stem cell。iPS)为重编程提供了一种崭新的方法,不仅可以避免伦理争议,还提供了一种更为便利的技术,为再生医学开辟了新的天地;同时,iPS技术为研究基因表达调控、蛋白质互作、机体生长发育等提供了一个非常重要的研究手段。本文主要论述了体细胞重编程的方法及iPS细胞的进展、面临的问题和应用前景。  相似文献   

6.
Ren J  Pak Y  He L  Qian L  Gu Y  Li H  Rao L  Liao J  Cui C  Xu X  Zhou J  Ri H  Xiao L 《Cell research》2011,21(5):849-853
  相似文献   

7.
Embryonic stem cells (ESCs) are established from the inner cell mass of preimplantation embryos, are capable of self‐renewal, and exhibit pluripotency. Given these unique properties, ESCs are expected to have therapeutic potential in regenerative medicine and as a powerful tool for in vitro differentiation studies of stem cells. Various growth factors and extracellular matrix components regulate the pluripotency and differentiation of ESC progenies. Thus, the cell surface receptors that bind these regulatory factors are crucial for the precise regulation of stem cells. To identify membrane proteins that are involved in the regulation of pluripotent stem cells, the membrane proteins of murine ESCs cultured with or without leukemia inhibitory factor (LIF) were purified and analyzed by quantitative proteomics. 2‐D PAGE‐based analysis using fluorescently labeled proteins and shotgun‐based analysis with isotope‐labeled peptides identified 338 proteins, including transmembrane, membrane‐binding, and extracellular proteins, which were expressed specifically in pluripotent or differentiated murine ESCs. Functions of the identified proteins revealed cell adhesion molecules, channels, and receptors, which are expected to play important roles in the maintenance of murine ESC pluripotency. Membrane proteins that are expressed in pluripotent ESCs but not in differentiated cells such as Slc16a1 and Bsg could be useful for the selection of the stem cells in vitro.  相似文献   

8.
miRNAs promote generation of porcine-induced pluripotent stem cells   总被引:1,自引:0,他引:1  
The pigs have similarities of organ size, immunology and physiology with humans. Porcine-induced pluripotent stem cells (piPSCs) have great potential application in regenerative medicine. Here, we established piPSCs induced from porcine fetal fibroblasts by the retroviral overexpression of Oct4, Sox2, Klf4, and c-Myc. The piPSCs not only express pluripotent markers but also have the capacity for differentiation in vivo and in vitro, including EB and teratoma formation. We supplemented microRNAs during the induction process because miR-302a, miR-302b, and miR-200c have been reported to be highly expressed in human and mouse embryonic stem cells and in iPSCs. In this study, we found that the overexpression of miR-302a, miR-302b, and miR-200c effectively improved the reprogramming efficiency and reduced the induction time for piPSCs in the OSKM and OSK induction systems. Due to the similar induction efficiency of 4F-induced piPSCs or of three factors combined with miR-302a, miR-302b, and miR-200c (3F-miRNA-induced piPSCs), we recommend the addition of miRNAs instead of c-Myc to reduce the tumorigenicity of piPSCs.  相似文献   

9.
Lang MF  Yang S  Zhao C  Sun G  Murai K  Wu X  Wang J  Gao H  Brown CE  Liu X  Zhou J  Peng L  Rossi JJ  Shi Y 《PloS one》2012,7(4):e36248
A major challenge in cancer research field is to define molecular features that distinguish cancer stem cells from normal stem cells. In this study, we compared microRNA (miRNA) expression profiles in human glioblastoma stem cells and normal neural stem cells using combined microarray and deep sequencing analyses. These studies allowed us to identify a set of 10 miRNAs that are considerably up-regulated or down-regulated in glioblastoma stem cells. Among them, 5 miRNAs were further confirmed to have altered expression in three independent lines of glioblastoma stem cells by real-time RT-PCR analysis. Moreover, two of the miRNAs with increased expression in glioblastoma stem cells also exhibited elevated expression in glioblastoma patient tissues examined, while two miRNAs with decreased expression in glioblastoma stem cells displayed reduced expression in tumor tissues. Furthermore, we identified two oncogenes, NRAS and PIM3, as downstream targets of miR-124, one of the down-regulated miRNAs; and a tumor suppressor, CSMD1, as a downstream target of miR-10a and miR-10b, two of the up-regulated miRNAs. In summary, this study led to the identification of a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. Characterizing the role of these miRNAs in glioblastoma stem cells may lead to the development of miRNA-based therapies that specifically target tumor stem cells, but spare normal stem cells.  相似文献   

10.
Induced pluripotent stem cells (iPSCs) are generated from adult cells that have been reprogrammed to pluripotency. However, in vitro cultivation and genetic reprogramming increase genetic instability, which could result in chromosomal abnormalities. Maintenance of genetic stability after reprogramming is required for possible experimental and clinical applications. The aim of this study was to analyze chromosomal alterations by using the G-banding karyotyping method applied to 97 samples from 38 iPSC cell lines generated from peripheral blood or Wharton’s jelly. Samples from patients with long QT syndrome, Jervell and Lange-Nielsen syndrome and amyotrophic lateral sclerosis and from normal individuals revealed the following chromosomal alterations: acentric fragments, chromosomal fusions, premature centromere divisions, double minutes, radial figures, ring chromosomes, polyploidies, inversions and trisomies. An analysis of two samples generated from Wharton’s jelly before and after reprogramming showed that abnormal clones can emerge or be selected and generate an altered lineage. IPSC lines may show clonal and nonclonal chromosomal aberrations in several passages (from P6 to P34), but these aberrations are more common in later passages. Many important chromosomal aberrations were detected, showing that G-banding is very useful for evaluating genetic instability with important repercussions for the application of iPSC lines.  相似文献   

11.
12.
徐燕宁  关娜  张庆华  雷蕾 《生命科学》2008,20(2):231-236
人类的胚胎干细胞(embryonic stem cells,ES cells)可以用来治疗很多疾病,但是如果通过核移植来获得与供体或者患者相匹配的ES细胞,就会受到人卵母细胞来源等条件的制约。这就促使了将体细胞重编程为多潜能细胞这样一种技术策略的发展,其中包括将分化细胞与ES细胞融合,在卵细胞、ES细胞或多潜能癌细胞的抽提物中孵育,强制多潜能因子过表达等具体的方法。通过这些途径引出了一些核功能的重编程以及相应的DNA甲基化修饰、组蛋白翻译后修饰,使体细胞表达特定的多潜能因子,转变为类似胚胎干细胞的多潜能细胞。  相似文献   

13.
Chromatin in pluripotent embryonic stem cells and differentiation   总被引:3,自引:0,他引:3  
Embryonic stem (ES) cells are unique in that they are pluripotent and have the ability to self-renew. The molecular mechanisms that underlie these two fundamental properties are largely unknown. We discuss how unique properties of chromatin in ES cells contribute to the maintenance of pluripotency and the determination of differentiation properties.  相似文献   

14.
The development of novel approaches for reprogramming mouse and human somatic cells has enabled the generation of induced pluripotent stem cells that are free of exogenous genes.  相似文献   

15.
16.
17.
Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.  相似文献   

18.
Acquisition of the pluripotent state coincides with epigenetic reprogramming of the X-chromosome. Female embryonic stem cells are characterized by the presence of two active X-chromosomes, cell differentiation by inactivation of one of the two Xs, and induced pluripotent stem cells by reactivation of the inactivated X-chromosome in the originating somatic cell. The tight linkage between X- and stem cell reprogramming occurs through pluripotency factors acting on noncoding genes of the X-inactivation center. This review article will discuss the latest advances in our understanding at the molecular level. Mouse embryonic stem cells provide a standard for defining the pluripotent ground state, which is characterized by low levels of the noncoding Xist RNA and the absence of heterochromatin marks on the X-chromosome. Human pluripotent stem cells, however, exhibit X-chromosome epigenetic instability that may have implications for their use in regenerative medicine. XIST RNA and heterochromatin marks on the X-chromosome indicate whether human pluripotent stem cells are developmentally ‘naïve’, with characteristics of the pluripotent ground state. X-chromosome status and determination thereof via noncoding RNA expression thus provide valuable benchmarks of the epigenetic quality of pluripotent stem cells, an important consideration given their enormous potential for stem cell therapy.  相似文献   

19.
《Cell Stem Cell》2023,30(4):450-459.e9
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   

20.
Compared with neural crest‐derived melanocytes, retinal pigment epithelium (RPE) cells in the back of the eye are pigment cells of a different kind. They are a part of the brain, form an epithelial monolayer, respond to distinct extracellular signals, and provide functions that far exceed those of a light‐absorbing screen. For instance, they control nutrient and metabolite flow to and from the retina, replenish 11‐cis‐retinal by re‐isomerizing all‐trans‐retinal generated during photoconversion, phagocytose daily a portion of the photoreceptors’ outer segments, and secrete cytokines that locally control the innate and adaptive immune systems. Not surprisingly, RPE cell damage is a major cause of human blindness worldwide, with age‐related macular degeneration a prevalent example. RPE replacement therapies using RPE cells generated from embryonic or induced pluripotent stem cells provide a novel approach to a rational treatment of such forms of blindness. In fact, RPE‐like cells can be obtained relatively easily when stem cells are subjected to a two‐step induction protocol, a first step that leads to a neuroectodermal fate and a second to RPE differentiation. Here, we discuss the characteristics of such cells, propose criteria they should fulfill in order to be considered authentic RPE cells, and point out the challenges one faces when using such cells in attempts to restore vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号