首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探讨猪冠状动脉前降支(LAD)结扎百分位点和心梗体积、左室射血分数的关系,以期指导研究者能够根据急性心肌梗死模型的心功能要求选择合适的LAD结扎百分位点。方法将47只小型猪开胸结扎心脏LAD中远段约30%~75%的不同百分位点,分别于术前、术后1 h心脏超声检查左室射血分数(LVEF),术后3 d进行常规冠状动脉造影,4周处死测量前降支结扎位点和梗死体积,最后用简单直线回归模型分析LAD结扎百分位点和心梗体积、左室射血分数回归方程和相关系数。结果47例动物手术过程中死亡8只,剩余39只存活动物冠状动脉造影均显示LAD中远段结扎部位处完全闭塞,表明手术成功。LAD结扎百分位点和术后1 h LVEF、术后1 hLVEF下降值、梗死心肌体积均明显相关(相关系数r分别为0.87、0.78和0.90,P均<0.001),其回归方程分别为:术后LVEF(%)=65.88-0.55x结扎百分位点;术后LVEF下降值(%)=0.12 0.59x结扎百分位点;心肌梗死体积(%)=0.53x结扎百分位点-5.43。结论猪LAD结扎百分位点和术后左室功能、梗死心肌体积均存在显著的相关性,可根据实验目的和对心功能的要求选择合适的结扎百分位点。  相似文献   

2.
Distribution and amount of neuropeptide Y- and synaptophysin-immunoreactive nervous structures within the heart were investigated in dogs 4 days after ligation of the left anterior descending coronary artery (LAD). In the right atrium and posterior left ventricular regions, which were taken as (non-infarcted) control areas, neuropeptide Y-immunoreactive paravascular nerves and a perivascular nerve plexus running within the adventitia of the coronary arteries and their branches down to the arterioles were observed. Morphometric measurements of the area density revealed 0.099 +/- 0.014% for synaptophysin- and 0.037 +/- 0.0072% for neuropeptide Y-immunoreactivity within the posterior wall of the left ventricular myocardium. Four days after ligation of the LAD only single synaptophysin- and neuropeptide Y-immunoreactive nerve fibers were very rarely detected in the infarcted region of the anterior wall of the left ventricle. Above the ligature larger than normal neuropeptide Y-immunoreactive axons within nerves along the LAD indicated a blockage of the axoplasmic transport of this peptide. When investigating this model of experimental myocardial infarction, mechanical traumatization of peri- and paravascular nerves of the LAD by the ligature has to be considered as a major pathogenetic factor, in addition to ischemia leading to denervation of infarcted as well as non-ischemic myocardium.  相似文献   

3.
Caveolin (Cav)-1 has been involved in the pathogenesis of ischemic injuries. For instance, modulations of Cav-1 expression have been reported in animal models of myocardial infarction and cerebral ischemia-reperfusion. Furthermore, ablation of the Cav-1 gene in mice has been shown to increase the extent of ischemic injury in models of cerebral and hindlimb ischemia. Cav-1 has also been suggested to play a role in myocardial ischemic preconditioning. However, the role of Cav-1 in myocardial ischemia (MI)-induced cardiac dysfunction still remains to be determined. We determined the outcome of a permanent left anterior descending coronary artery (LAD) ligation in Cav-1 knockout (KO) mice. Wild-type (WT) and Cav-1 KO mice were subjected to permanent LAD ligation for 24 h. The progression of ischemic injury was monitored by echocardiography, hemodynamic measurements, 2,3,5-triphenyltetrazolium chloride staining, β-binding analysis, cAMP level measurements, and Western blot analyses. Cav-1 KO mice subjected to LAD ligation display reduced survival compared with WT mice. Despite similar infarct sizes, Cav-1 KO mice subjected to MI showed reduced left ventricular (LV) ejection fraction and fractional shortening as well as increased LV end-diastolic pressures compared with their WT counterparts. Mechanistically, Cav-1 KO mice subjected to MI exhibit reduced β-adrenergic receptor density at the plasma membrane as well as decreased cAMP levels and PKA phosphorylation. In conclusion, ablation of the Cav-1 gene exacerbates cardiac dysfunction and reduces survival in mice subjected to MI. Mechanistically, Cav-1 KO mice subjected to LAD ligation display abnormalities in β-adrenergic signaling.  相似文献   

4.
Current rodent models of ischemia/infarct or pressure-volume overload are not fully representative of human heart failure. We developed a new model of congestive heart failure (CHF) with both ischemic and stress injuries combined with fibrosis in the remote myocardium. Sprague-Dawley male rats were used. Ascending aortic banding (Ab) was performed to induce hypertrophy. Two months post-Ab, ischemia-reperfusion (I/R) injury was induced by ligating the left anterior descending (LAD) artery for 30 min. Permanent LAD ligation served as positive controls. A debanding (DeAb) procedure was performed after Ab or Ab + I/R to restore left ventricular (LV) loading properties. Cardiac function was assessed by echocardiography and in vivo hemodynamic analysis. Myocardial infarction (MI) size and myocardial fibrosis were assessed. LV hypertrophy was observed 4 mo post-Ab; however, systolic function was preserved. LV hypertrophy regressed within 1 mo after DeAb. I/R for 2 mo induced a small to moderate MI with mild impairment of LV function. Permanent LAD ligation for 2 mo induced large MI and significant cardiac dysfunction. Ab for 2 mo followed by I/R for 2 mo (Ab + I/R) resulted in moderate MI with significantly reduced ejection fraction (EF). DeAb post Ab + I/R to reduce afterload could not restore cardiac function. Perivascular fibrosis in remote myocardium after Ab + I/R + DeAb was associated with decreased cardiac function. We conclude that Ab plus I/R injury with aortic DeAb represents a novel model of CHF with increased fibrosis in remote myocardium. This model will allow the investigation of vascular and fibrotic mechanisms in CHF characterized by low EF, dilated LV, moderate infarction, near-normal aortic diameter, and reperfused coronary arteries.  相似文献   

5.
猪急性心肌梗死模型发生心室颤动的相关因素分析   总被引:2,自引:0,他引:2  
目的探讨猪冠状动脉前降支(LAD)结扎后发生室颤的特点及其相关因素,以期提高猪急性心肌梗死模型的成活率。方法57只小型猪开胸结扎心脏LAD不同位点,对室颤和体重、性别、术前心率、术前左室射血分数(LVEF)、开胸径路(旁正中/肋间)、手术时间、结扎百分位点、术后心率、术后发生室早或短阵室速等因素进行单因素相关分析和Logistic回归分析,进而对室颤的发生时间、室颤前心电图特点等进行评价。结果57例动物手术过程发生室颤18例,死亡11例。室颤均发生在结扎冠脉后35 min内,高峰时间为结扎冠脉后5 min和20 min;心率快于160 bpm或慢于60 bpm时容易诱发室颤。与非室颤组动物比较,室颤组动物的结扎位点高,术后最快心率>60 bpm的动物较多,短阵室速发生率高(P<0.01)。Logistic回归分析显示结扎位点过高是急性心肌梗死后发生室颤唯一的独立危险因素。结论结扎位点过高是猪急性心肌梗死后发生室颤的最重要危险因素;冠脉结扎后30 min内应该严密心电监护,特别注意结扎冠脉后5 min和20 min二个时间点、>160 bpm或<60 bpm二种心率、以及短阵室速等先兆事件。  相似文献   

6.
Summary Distribution and amount of neuropeptide Y- and synaptophysin-immunoreactive nervous structures within the heart were investigated in dogs 4 days after ligation of the left anterior descending coronary artery (LAD). In the right atrium and posterior left ventricular regions, which were taken as (non-infarcted) control areas, neuropeptide Y-immunoreactive paravascular nerves and a perivascular nerve plexus running within the adventitia of the coronary arteries and their branches down to the arterioles were observed. Morphometric measurements of the area density revealed 0.099±0.014% for synaptophysin- and 0.037±0.0072% for neuropeptide Y-immunoreactivity within the posterior wall of the left ventricular myocardium. Four days after ligation of the LAD only single synaptophysin-and neuropeptide Y-immunoreactive nerve fibers were very rarely detected in the infarcted region of the anterior wall of the left ventricle. Above the ligature larger than normal neuropeptide Y-immunoreactive axons within nerves along the LAD indicated a blockage of the axoplasmic transport of this peptide.When investigating this model of experimental myocardial infarction, mechanical traumatization of peri- and paravascular nerves of the LAD by the ligature has to be considered as a major pathogenetic factor, in addition to ischemia leading to denervation of infarcted as well as nonischemic myocardium.This study was supported by the SFB 320 within the Deutsche Forschungsgemeinschaft (DFG)Parts of the results were presented at the 59. Scientific Session of the American Heart Association (1986) and at the Congress of the Deutsche Gesellschaft für Herz- und Kreislaufforschung 1987.  相似文献   

7.

Aims

The coronary artery ligation model in rodents mimics human myocardial infarction (MI). Normally mechanical ventilation and prolonged anesthesia period are needed. Recently, a method has been developed to create MI by popping-out the heart (without ventilation) followed by immediate suture ligation. Mortality is high due to the time-consuming suture ligation process while the heart is exposed. We sought to improve this method and reduce mortality by rapid coronary ligation using a surgical clip instead of a suture.

Methods and Results

Mice were randomized into 3 groups: clip MI (CMI), suture MI (SMI), or sham (SHAM). In all groups, heart was manually exposed without intubation through a small incision on the chest wall. Unlike the conventional SMI method, mice in the CMI group received a metal clip on left anterior descending artery (LAD), quickly dispensed by an AutoSuture Surgiclip. The CMI method took only 1/3 of ligation time of the standard SMI method and improved post-MI survival rate. TTC staining and Masson’s trichrome staining revealed a similar degree of infarct size in the SMI and CMI groups. Echocardiograph confirmed that both SMI and CMI groups had a similar reduction of ejection fraction and fraction shortening over the time. Histological analysis showed that the numbers of CD68+ macrophages and apoptotic cells (TUNEL-positive) are indistinguishable between the two groups.

Conclusion

This new method, taking only less than 3 minutes to complete, represents an efficient myocardial infarction model in rodents.  相似文献   

8.
目的大鼠自主呼吸情况下,快捷、简便地建立大鼠急性心肌梗死模型。方法 180~220gSD大鼠60只,于胸骨左缘第4-5肋间隙切开皮层作荷包缝合,逐层钝性分离肌肉,挤出心脏,快速结扎左冠状动脉前降支(LAD)后,送回心脏同时挤压胸廓,拉紧荷包以建立心肌梗死模型。记录结扎前、结扎后3h心电图;结扎3h后取出心脏,冰冻切片TTC染色。结果 50只大鼠成功建立心肌梗死模型,模型成功率为83.33%。心电图显示结扎冠脉后出现R波峰降低,ST段拱背抬高及ST-T融合,TTC染色后左心室出现明显灰白色梗死区。结论本方法可在大鼠自主呼吸情况下,较短的时间内以简便的手术、较小的创伤建立大鼠急性心肌梗死模型。  相似文献   

9.
10.
Within minutes of acute myocardial infarction (MI), proinflammatory cytokines increase in the brain, heart, and plasma. We hypothesized that cardiac afferent nerves stimulated by myocardial injury signal the brain to increase central cytokines. Urethane-anesthetized male Sprague-Dawley rats underwent ligation of the left anterior descending coronary artery (LAD) or sham LAD ligation after bilateral cervical vagotomy, sham vagotomy, or application of a 10% phenol solution to the epicardial surface of the myocardium at risk. MI caused a significant increase in tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta in the plasma and heart, which was blunted by vagotomy. MI also caused a significant increase in hypothalamic TNF-alpha and IL-1beta, which was not affected by vagotomy. In contrast, epicardial phenol blocked MI-induced increases in hypothalamic TNF-alpha and IL-1beta without affecting increases in the plasma and heart. These findings demonstrate that the appearance of proinflammatory cytokines in the brain after MI is independent of blood-borne cytokines and suggest that cardiac sympathetic afferent nerves activated by myocardial ischemia signal the brain to increase cytokine production. In addition, an intact vagus nerve is required for the full expression of proinflammatory cytokines in the injured myocardium and in the circulation. We conclude that the sympathetic and parasympathetic innervation of the heart both contribute to the acute proinflammatory response to MI.  相似文献   

11.
In vivo models of myocardial infarction following coronary artery ligation in the rat still suffer from high early mortality and a low rate of success of myocardial infarction. This study investigated the possibility of reducing early mortality and increasing the rate of myocardial infarction by modifications of surgical techniques. Eighteen rats were divided into two groups: normal control (3 rats) and ligation (15 rats). The major modifications of surgical techniques used in this study include: (1) no exteriorization of the heart, (2) ligation of the origins of the branches rather than the main trunk of the left coronary artery, (3) removal of air from the chest after closure, (4) supplying oxygen immediately after extubation. Following surgery, the rats recovered uneventfully and 11 rats were alive after 16 weeks. One rat, with a large myocardial infarction, died 2 h after surgery. Early mortality (during surgery and 1 week after surgery) was 6.7% with a success rate of myocardial infarction of 85%. The left ventricle in the ligation group showed significant dilation relative to normal and shamoperated control hearts (317% of control hearts, p < 0.001). However, myocardial mass did not increase. The average infarct size was 33%. These results demonstrate that a reduction in early mortality and an increased success rate of myocardial infarction can be achieved by modifications of surgical techniques.  相似文献   

12.
We have previously found that, following myocardial ischemia/reperfusion injury, isolated hearts from bax gene knockout mice [Bax(−/;−)] exhibited higher cardioprotection than the wild-type. We here explore the effect of Bax(−/−), following myocardial infarction (MI) in vivo. Homozygotic Bax(−/−) and matched wild-type were studied. Mice underwent surgical ligation of the left anterior descending coronary artery (LAD). The progressive increase in left-ventricular end diastolic diameter, end systolic diameter, in Bax(−/−) was significantly smaller than in Bax(+/+) at 28 d following MI (p<0.03) as seen by echocardiography. Concomitantly, fractional shortening was higher (35±4.1% and 27±2.5%, p<0.001) and infarct size was smaller in Bax(−/−) compared to the wild-type at 28days following MI (24±3.7% and 37±3.3%, p<0.001). Creatine kinase and lactate dehydrogenase release in serum were lower in Bax(−/−) than in Bax(+/+) 24h following MI. Caspase 3 activity was elevated at 2 h after MI only in the wild-type, but reduced to baseline values at 1 and 28 d post-MI. Bax knockout mice hearts demonstrated reduced infarct size and improved myocardial function following permanent coronary artery occlusion. The Bax gene appears to play a significant role in the post-MI response that should be further investigated.  相似文献   

13.
Exogenous hydrogen sulfide (H2S) leads to down-regulation of inflammatory responses and provides myocardial protection during acute ischemia/reperfusion injury; however its role during chronic heart failure (CHF) due to myocardial infarction (MI) is yet to be unveiled. We previously reported that H2S inhibits antiangiogenic factors such, as endostatin and angiostatin, but a little is known about its effect on parstatin (a fragment of proteinase-activated receptor-1, PAR-1). We hypothesize that H2S inhibits parstatin formation and promotes VEGF activation, thus promoting angiogenesis and significantly limiting the extent of MI injury. To verify this hypothesis MI was created in 12 week-old male mice by ligation of left anterior descending artery (LAD). Sham surgery was performed except LAD ligation. After the surgery mice were treated with sodium hydrogen sulfide (30 μmol/l NaHS, a donor for H2S, in drinking water) for 4 weeks. The LV tissue was analyzed for VEGF, flk-1 and flt-1, endostatin, angiostatin and parstatin. The expression of VEGF, flk-1 and flt-1 were significantly increased in treated mice while the level of endostatin, angiostatin and parstatin were decreased compared to in untreated mice. The echocardiography in mice treated with H2S showed the improvement of heart function compared to in untreated mice. The X-ray and Doppler blood flow measurements showed enhancement of cardiac-angiogenesis in mice treated with H2S. This observed cytoprotection was associated with an inhibition of anti-angiogenic proteins and stimulation of angiogenic factors. We established that administration of H2S at the time of MI ameliorated infarct size and preserved LV function during development of MI in mice. These results suggest that H2S is cytoprotective and angioprotective during evolution of MI.  相似文献   

14.
Recently, cardiac telocytes were found in the myocardium. However, the functional role of cardiac telocytes and possible changes in the cardiac telocyte population during myocardial infarction in the myocardium are not known. In this study, the role of the recently identified cardiac telocytes in myocardial infarction (MI) was investigated. Cardiac telocytes were distributed longitudinally and within the cross network of the myocardium, which was impaired during MI. Cardiac telocytes in the infarction zone were undetectable from approximately 4 days to 4 weeks after an experimental coronary occlusion was used to induce MI. Although cardiac telocytes in the non‐ischaemic area of the ischaemic heart experienced cell death, the cell density increased approximately 2 weeks after experimental coronary occlusion. The cell density was then maintained at a level similar to that observed 1–4 days after left anterior descending coronary artery (LAD)‐ligation, but was still lower than normal after 2 weeks. We also found that simultaneous transplantation of cardiac telocytes in the infarcted and border zones of the heart decreased the infarction size and improved myocardial function. These data indicate that cardiac telocytes, their secreted factors and microvesicles, and the microenvironment may be structurally and functionally important for maintenance of the physiological integrity of the myocardium. Rebuilding the cardiac telocyte network in the infarcted zone following MI may be beneficial for functional regeneration of the infarcted myocardium.  相似文献   

15.
Recent studies suggest that the therapeutic effects of stem cell transplantation following myocardial infarction (MI) are mediated by paracrine factors. One of the main goals in the treatment of ischemic heart disease is to stimulate vascular repair mechanisms. Here, we sought to explore the therapeutic angiogenic potential of mesenchymal stem cell (MSC) secretions. Human MSC secretions were collected as conditioned medium (MSC-CM) using a clinically compliant protocol. Based on proteomic and pathway analysis of MSC-CM, an in vitro assay of HUVEC spheroids was performed identifying the angiogenic properties of MSC-CM. Subsequently, pigs were subjected to surgical left circumflex coronary artery ligation and randomized to intravenous MSC-CM treatment or non-CM (NCM) treatment for 7 days. Three weeks after MI, myocardial capillary density was higher in pigs treated with MSC-CM (645 ± 114 vs 981 ± 55 capillaries/mm(2); P = 0.021), which was accompanied by reduced myocardial infarct size and preserved systolic and diastolic performance. Intravenous MSC-CM treatment after myocardial infarction increases capillary density and preserves cardiac function, probably by increasing myocardial perfusion.  相似文献   

16.
Oxidative stress plays a critical role in the pathophysiology of cardiac failure, including the modulation of neovascularization following myocardial infarction (MI). Redox molecules thioredoxin (Trx) and glutaredoxin (Grx) superfamilies actively maintain intracellular thiol-redox homeostasis by scavenging reactive oxygen species. Among these two superfamilies, the pro-angiogenic function of Trx-1 has been reported in chronic MI model whereas similar role of Grx-1 remains uncertain. The present study attempts to establish the role of Grx-1 in neovascularization and ventricular remodeling following MI. Wild-type (WT) and Grx-1 transgenic (Grx-1(Tg/+)) mice were randomized into wild-type sham (WTS), Grx-1(Tg/+) Sham (Grx-1(Tg/+)S), WTMI, Grx-1(Tg/+)MI. MI was induced by permanent occlusion of the LAD coronary artery. Sham groups underwent identical time-matched surgical procedures without LAD ligation. Significant increase in arteriolar density was observed 7 days (d) after surgical intervention in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Further, improvement in myocardial functional parameters 30 d after MI was observed including decreased LVIDs, LVIDd, increased ejection fraction and, fractional shortening was also observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Moreover, attenuation of oxidative stress and apoptotic cardiomyocytes was observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Increased expression of p-Akt, VEGF, Ang-1, Bcl-2, survivin and DNA binding activity of NF-κB were observed in the Grx-1(Tg/+)MI group when compared to WTMI animals as revealed by Western blot analysis and Gel-shift analysis, respectively. These results are the first to demonstrate that Grx-1 induces angiogenesis and diminishes ventricular remodeling apparently through neovascularization mediated by Akt, VEGF, Ang-1 and NF-κB as well as Bcl-2 and survivin-mediated anti-apoptotic pathway in the infarcted myocardium.  相似文献   

17.
Phosphorylcholine is a pro-inflammatory epitope exposed on apoptotic cells, and phosphorylcholine monoclonal immunoglobulin (Ig)G antibodies (PC-mAb) have anti-inflammatory properties. In this study, we hypothesize that PC-mAb treatment reduces adverse cardiac remodelling and infarct size (IS) following unreperfused transmural myocardial infarction (MI). Unreperfused MI was induced by permanent ligation of the left anterior descending (LAD) coronary artery in hypercholesterolaemic APOE*3-Leiden mice. Three weeks following MI, cardiac magnetic resonance (CMR) imaging showed a reduced LV end-diastolic volume (EDV) by 21% and IS by 31% upon PC-mAb treatment as compared to the vehicle control group. In addition, the LV fibrous content was decreased by 27% and LV wall thickness was better preserved by 47% as determined by histological analysis. Two days following MI, CCL2 concentrations, assessed by use of ELISA, were decreased by 81% and circulating monocytes by 64% as assessed by use of FACS analysis. Additionally, local leucocyte infiltration determined by immunohistological analysis showed a 62% decrease after three weeks. In conclusion, the local and systemic inflammatory responses are limited by PC-mAb treatment resulting in restricted adverse cardiac remodelling and IS following unreperfused MI. This indicates that PC-mAb holds promise as a therapeutic agent following MI limiting adverse cardiac remodelling.  相似文献   

18.
BackgroundCeruloplasmin (Cp) is a major copper-binding protein produced in the liver and delivers copper to extrahepatic organs. Patients with myocardial infarction are often featured by an elevation of serum copper concentrations due to copper efflux from ischemic hearts. The present study was undertaken to test the hypothesis that serum copper elevation leads to up-regulation of hepatic Cp in myocardial infarction.MethodsAdult male Sprague-Dawley rats were subjected to left anterior descending (LAD) coronary artery ligation to induce myocardial infarction. Serum copper and Cp levels, as well as changes in hepatic Cp and copper-transporting P-type ATPase (Atp7b), were determined from blood and liver samples collected on day 1, 4, or 7 after the operation.ResultsSerum copper concentrations were significantly increased on day 4 after LAD ligation, accompanied by an increase in serum Cp levels and activities. Concomitantly, the protein levels of Cp and copper exporter, Atp7b, were also significantly increased in the liver. Furthermore, inhibiting the increase of serum copper by a copper chelator, triethylenetetramine (TETA), effectively abolished the elevated Cp activity after LAD ligation.ConclusionThese results indicate that serum Cp elevation in response to myocardial ischemia most likely resulted from the increased hepatic Cp production, which in turn was more responsive to serum copper elevation than inflammatory response following myocardial ischemia.  相似文献   

19.

Introduction

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently been shown to express key cardiac proteins and improve in vivo cardiac function when administered following myocardial infarction. However, the efficacy of hiPSC-derived cell therapies, in direct comparison to current, well-established stem cell-based therapies, is yet to be elucidated. The goal of the current study was to compare the therapeutic efficacy of human mesenchymal stem cells (hMSCs) with hiPSC-CMs in mitigating myocardial infarction (MI).

Methods

Male athymic nude hyrats were subjected to permanent ligation of the left-anterior-descending (LAD) coronary artery to induce acute MI. Four experimental groups were studied: 1) control (non-MI), 2) MI, 3) hMSCs (MI+MSC), and 4) hiPSC-CMs (MI+hiPSC-derived cardiomyocytes). The hiPSC-CMs and hMSCs were labeled with superparamagnetic iron oxide (SPIO) in vitro to track the transplanted cells in the ischemic heart by high-field cardiac MRI. These cells were injected into the ischemic heart 30-min after LAD ligation. Four-weeks after MI, cardiac MRI was performed to track the transplanted cells in the infarct heart. Additionally, echocardiography (M-mode) was performed to evaluate the cardiac function. Immunohistological and western blot studies were performed to assess the cell tracking, engraftment and cardiac fibrosis in the infarct heart tissues.

Results

Echocardiography data showed a significantly improved cardiac function in the hiPSC-CMs and hMSCs groups, when compared to MI. Immunohistological studies showed expression of connexin-43, α-actinin and myosin heavy chain in engrafted hiPSC-CMs. Cardiac fibrosis was significantly decreased in hiPSC-CMs group when compared to hMSCs or MI groups. Overall, this study demonstrated improved cardiac function with decreased fibrosis with both hiPSC-CMs and hMSCs groups when compared with MI group.  相似文献   

20.
The neonatal mice myocardial infarction (MI) has been established as one of the heart regeneration models. However, the role of inflammation in this model is still unclear. We sought to systematically evaluate this model and explore the role of inflammation in it. Postnatal day 1 (P1) or day 7 (P7) mice were conducted left anterior descending coronary artery (LAD) ligation. Cardiac damage, repair, and regeneration were examined by histology and echocardiography. Inflammation was detected by heart section hematoxylin and eosin (HE) staining and tissue qPCR. Dexamethasone (Dex) was used to inhibit inflammation and its effects on heart regeneration were evaluated. Two days after P1 mice MI, cardiomyocytes in ischemia area died and heart function decreased. Then surrounding cardiomyocytes proliferated to repair the injury. At day 28 after MI, hearts were almost fully regenerated with a little fibrosis existed. In contrary, P7 mice MI resulted in thinning and fibrosis of the ventricular wall. Inflammation was induced by LAD ligation after P1 mice MI and dynamic changed during the process. Inhibition of inflammation by Dex impaired heart regeneration. These demonstrated that cardiomyocytes death and heart regeneration occurred in this model and inflammation might play a crucial role in it. Modulating inflammation may provide a promising therapeutic strategy to support heart regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号