首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increasing awareness of the effects of climate change on plant distributions in situ has made the appropriate application of ex situ techniques more crucial. These ex situ conservation techniques need to be targeted to priority species identified at risk from climate change. The present paper assesses the sensitivity of plant species to climate change in Belgium and explores the current conservation status of those species potentially vulnerable to climate change. We then checked whether these species were included in ex situ collections. The whole Belgian flora has been assessed (a total of 1,396 native plant species). We evaluated whether each of these species occurs in a “climate change-vulnerable” habitat, having therefore a higher probability to be impacted by climate change. The assessment revealed that there are at least 415 native plant species (30% of the Belgian native flora) that appear to be vulnerable to climate change during the next decades. Results also showed that about one-third of the species currently included in the red list may have their situation made potentially worse due to climate change. In addition, depending on the region, between 45 and 67% of the species that are currently not threatened in Belgium are likely to become so due to climate change. It also appeared that only 32% of these climate change-vulnerable species are currently held ex situ. We conclude that there is a need to identify gaps in existing ex situ collections as an urgent priority and ensure that species potentially vulnerable to climate change are conserved ex situ.  相似文献   

2.
Reintroducing captive-born individuals of some extirpated flagship animal species is a helpful and remedy measure for promoting biodiversity conservation, and a successful reintroduction relies heavily on public support. However, little information is available on the factors affecting the public support for reintroduction of large carnivore species. In order to evaluate public support and willingness to pay for the Giant Panda Reintroduction Project (GPRP), we conducted 1100 interviews in August 2014 at Huaying city, Sichuan, China, close to where captive-born giant pandas (Ailuropoda melanoleuca) will be reintroduced. The results showed that local people strongly support this project and that 78.5 % of them are willing to pay an annual contribution. Per capita annual payments averaged USD31, and the potential value of donations to the GPRP in Huaying is about 11 million USD per year. Factors like interviewees’ residential area, occupation, education level, liking of wildlife, level of concern for wildlife conservation, the degree of familiarity with giant pandas, and the frequency of visiting captive giant pandas significantly affected their attitudes and willingness to pay for the project. The notion of “because I love pandas” was the main reason why respondents were willing to pay for the project; respondents’ doubts about the appropriate use of donated funds made them be unwilling to pay for the project. The results suggest that the GPRP is highly and socially acceptable amongst locals due to perceived social, economic and ecological benefits of the reintroduction. These findings clearly indicate, for the chances of reintroduction to be most socially accepted, governments should improve management and accountability when using donated funds, and create more opportunities for the public to engage with giant pandas, thereby encouraging people to become involved in conservation work benefiting conservation for the giant pandas and other endangered species.  相似文献   

3.
Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.  相似文献   

4.
In Central Europe, massive losses in species richness of breeding birds have been documented in the last decades, but the question arises whether species richness is currently still decreasing or again increasing due to conservation efforts. In this study, we investigated regional and local species richness as well as mean number of breeding pairs and mean biomass per tetrad over a period of some 20 years at Lake Constance. Three quantitative censuses of 303 tetrads (2 × 2 km2) repeated at 10-year intervals (1980–1981, 1990–1992, 2000–2002) revealed an increase in regional species richness (total number of breeding species). At the same time, however, a strong decline in local species richness (number of breeding species per tetrad), number of breeding pairs, and estimated biomass were observed. Changes of species richness differed markedly between Nonpasserine and Passerine birds. Whereas species richness of Nonpasserines remained constant from 1980 to 1990, and even increased between 1990 and 2000, that of Passerines decreased in both periods. This indicates that effects of conservation efforts apparently eclipse more general effects of climate and habitat change in Nonpasserines. The massive abundance and biomass losses observed in formerly common Passerine species are not compensated by gains in populations of Nonpasserine species. The results of the three bird censuses at Lake Constance imply that ongoing habitat degradation and human impacts as well as increasing effects of climate change are the main drivers of the observed population changes.  相似文献   

5.
Arctic relict populations, which persist in disjunct locations far south of a species’ normal range, are at the frontline of climate change and may be especially susceptible to the negative impacts of climate warming. Further, these relict populations may face increasing contact with, or become outcompeted by, invasive species if the invasive taxa are spreading along with the warming climate. Relict populations are simultaneously of particular conservation importance due to their unique genetic make-up and potential for adaptations to warmer temperatures compared to populations at the core of the species range. In this study, we used genotyping-by-sequencing to study the population genetics of Euphrasia hudsoniana, a polyploid arctic disjunct of conservation concern, at the southern edge of its range along the northwestern shore of Lake Superior. In addition, we examined evidence for hybridization with its invasive congener, E. stricta. Overall, we found clear differentiation between the native and invasive species indicated by nearly all analyses. There was limited evidence for gene flow from the invasive into the native species, but patterns were consistent with more extensive gene flow in the opposite direction. Differentiation among native populations was low, yet two of the five populations fell into a separate, distinct group based on STRUCTURE analyses. Continued genetic monitoring of these populations will help elucidate whether hybridization with invasives is a burgeoning threat for this arctic relict.  相似文献   

6.
Climate change leads to rapid, differential changes in phenology across trophic levels, often resulting in temporal mismatches between predators and their prey. If a species cannot easily adjust its timing, it can adapt by choosing a new breeding location with a later phenology of its prey. In this study, we experimentally investigated whether long-distance dispersal to northern breeding grounds with a later phenology could be a feasible process to restore the match between timing of breeding and peak food abundance and thus improve reproductive success. Here, we report the successful translocation of pied flycatchers (Ficedula hypoleuca) to natural breeding sites 560 km to the Northeast. We expected translocated birds to have a fitness advantage with respect to environmental phenology, but to potentially pay costs through the lack of other locally adapted traits. Translocated individuals started egg laying 11 days earlier than northern control birds, which were translocated only within the northern site. The number of fledglings produced was somewhat lower in translocated birds, compared to northern controls, and fledglings were in lower body condition. Translocated individuals were performing not significantly different to control birds that remained at the original southern site. The lack of advantage of the translocated individuals most likely resulted from the exceptionally cold spring in which the experiment was carried out. Our results, however, suggest that pied flycatchers can successfully introduce their early breeding phenotype after dispersing to more northern areas, and thus that adaptation through dispersal is a viable option for populations that get locally maladapted through climate change.  相似文献   

7.
8.
Urbanization has destroyed and fragmented previously large areas of habitat. Small remnants that still exist in numerous cities will be unable to sustain many viable wild plant populations if they do not expand into the surrounding urban matrix. Residential gardens form a significant component of urban green space in many cities and therefore could play a role in redressing this problem. Our ecological and social scientific study examined factors influencing the dispersal and regeneration of 12 bird-dispersed native woody species from Riccarton Bush, a 7.8 ha urban forest remnant, into surrounding residential properties in Christchurch, New Zealand. Over 125 years, the reported number of native vascular plant species in the Bush has declined by a third. Some species, particularly Dacrycarpus dacrydioides, the dominant woody species in the Bush, are being dispersed by birds and establishing in residential gardens predominantly within 250 m of the forest margin. These juveniles are not reaching maturity as most gardeners tend to remove all non-planted woody species. This suggests natural potential for regeneration exists but is insufficient without active human intervention. Our survey results show people are supportive of native plants in general but lack knowledge of the species. They are willing to plant locally appropriate woody species if provided with plants, information, and, most importantly, control over the location of plantings. Residential gardens consequently have the potential to play a major role in the conservation of urban biodiversity especially for species suited to the functions and size of gardens.  相似文献   

9.
Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species’ suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr?1, about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr?1). The direction of shifts was not uniform. The majority of species’ distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing.  相似文献   

10.
The distribution and future fate of ectothermic organisms in a warming world will be dictated by thermalscapes across landscapes. That is particularly true for stream fishes and cold‐water species like trout, salmon, and char that are already constrained to high elevations and latitudes. The extreme climates in those environments also preclude invasions by most non‐native species, so identifying especially cold habitats capable of absorbing future climate change while still supporting native populations would highlight important refugia. By coupling crowd‐sourced biological datasets with high‐resolution stream temperature scenarios, we delineate network refugia across >250 000 stream km in the Northern Rocky Mountains for two native salmonids—bull trout (BT) and cutthroat trout (CT). Under both moderate and extreme climate change scenarios, refugia with high probabilities of trout population occupancy (>0.9) were predicted to exist (33–68 BT refugia; 917–1425 CT refugia). Most refugia are on public lands (>90%) where few currently have protected status in National Parks or Wilderness Areas (<15%). Forecasts of refuge locations could enable protection of key watersheds and provide a foundation for climate smart planning of conservation networks. Using cold water as a ‘climate shield’ is generalizable to other species and geographic areas because it has a strong physiological basis, relies on nationally available geospatial data, and mines existing biological datasets. Importantly, the approach creates a framework to integrate data contributed by many individuals and resource agencies, and a process that strengthens the collaborative and social networks needed to preserve many cold‐water fish populations through the 21st century.  相似文献   

11.
D. I. LEECH  & H. Q. P. CRICK 《Ibis》2007,149(S2):128-145
There is now overwhelming evidence that an increase in the concentration of greenhouse gases in the Earth's atmosphere has caused global temperatures to increase by 0.6 °C since 1900 and further increases of between 1.4 and 5.8 °C are predicted over the next century. Changes in climatic conditions have already influenced the demography, phenology and distribution of a wide range of plant and animal taxa. This review focuses on the impacts, both observed and potential, of climate change on birds breeding in temperate woodlands of the Western Palaearctic, a significant proportion of which are currently declining. Changes in ambient temperatures and patterns of precipitation may have direct and indirect effects on the survival rates and productivity of bird species, thus influencing population sizes. For some species or populations, the timing of events such as egg-laying and return from the wintering grounds is also changing in relation to shifts in the peak of food availability during the breeding season. The degree to which different individuals are able to track these temporal changes will have a significant bearing on population sizes and distributions in the future. Unless active management steps are taken, the relatively low dispersal rates of tree species may lead to a decrease in the total area of some woodland habitat types as losses at the southern edge of the range are likely to occur much more quickly than expansion at the northern edge. In addition, the dispersal rates of many woodland birds are themselves low, which could affect their ability to move to new habitat patches if currently occupied areas become unsuitable. Thus, woodland birds may be particularly susceptible to the impacts of climate change.  相似文献   

12.
Oceanic islands harbour a disproportionately large share of extinct and endangered birds worldwide and up to about 6,800 highly threatened plants, stressing the urgency for conservation efforts there. However, effective conservation action can only be as sound as the ecological understanding on which it is based. Knowledge about the ecology of threatened birds and plants can be relatively sketchy even in well-studied oceanic islands and this can potentially misdirect or erode conservation actions’ effectiveness. We used camera traps to document vertebrate flower visitors of a threatened, mono-specific endemic oceanic island plant (Roussea simplex) that produces much nectar and which was abundant until the 1930s before declining severely despite its presence mostly within protected areas. We determined proportions of native and alien flower visitors in four populations and characterised their ecological role (e.g. florivore, nectar robber, pollinator) through observations and exclusion experiments alongside experiments to determine seed sets by agamospermy, autogamy, geitonogamy and xenogamy. Five native and three alien vertebrate species visited flowers (N = 5,085 camera trap-hours), 96.6% of visits being from birds. Among endemics, 74–96% of visits were by the Mauritius Bulbul (Hypsipetes olivaceus), a threatened bird able to effect pollination contrary to the other endemic birds. Roussea simplex is primarily xenogamous, producing 2,657 ± 480 seeds, and seed set dropped markedly when the bird was excluded (861.8 ± 91.0 SE, Kruskal-Wallis χ2 = 14.2, p < 0.001). Natural seed set was very low (410.0 ± 85.3 SE) where the bird was locally extinct or very rare. Invasive alien rats (Rattus rattus) and long-tailed macaques (Macaca fascicularis) were important florivores or nectar robbers. Systematic non-intrusive study using camera traps combined with manipulative experiments revealed a mutualism between two relatively well-studied threatened endemic species as well as new threats from alien vertebrates acting as nectar robbers and florivores. Roussea simplex’s major decline within protected areas and its abundant and year round flowering and nectar production point to a major hitherto unrecorded drop in floral resource previously available to at least five endemic species, and particularly to its commonest flower visitor and principal pollinator, the threatened Mauritius Bulbul. These findings exemplify how systematic non-intrusive study of threatened species may radically change conservation managers’ priorities which in the current case should focus primarily on controlling alien rats and macaques and re-instating or reinforcing Bulbul-Roussea mutualism as each would be more impactful than addressing gecko-Roussea mutualism disruption by alien ants which so far was the only recorded threat thought to drive the rapid decline of Roussea simplex. Our study underscores that current conservation efforts should also pay particular attention to medium to longer-term changes in habitat or community composition which may not be obvious from merely considering extent and composition of current habitats.  相似文献   

13.
We used species distribution modeling to investigate the potential effects of climate change on 24 species of Neotropical anurans of the genus Melanophryniscus. These toads are small, have limited mobility, and a high percentage are endangered or present restricted geographical distributions. We looked at the changes in the size of suitable climatic regions and in the numbers of known occurrence sites within the distribution limits of all species. We used the MaxEnt algorithm to project current and future suitable climatic areas (a consensus of IPCC scenarios A2a and B2a for 2020 and 2080) for each species. 40% of the species may lose over 50% of their potential distribution area by 2080, whereas 28% of species may lose less than 10%. Four species had over 40% of the currently known occurrence sites outside the predicted 2080 areas. The effect of climate change (decrease in climatic suitable areas) did not differ according to the present distribution area, major habitat type or phylogenetic group of the studied species. We used the estimated decrease in specific suitable climatic range to set a conservation priority rank for Melanophryniscus species. Four species were set to high conservation priority: M. montevidensis, (100% of its original suitable range and all known occurrence points potentially lost by 2080), M. sp.2, M. cambaraensis, and M. tumifrons. Three species (M. spectabilis, M. stelzneri, and M. sp.3) were set between high to intermediate priority (more than 60% decrease in area predicted by 2080); nine species were ranked as intermediate priority, while eight species were ranked as low conservation priority. We suggest that monitoring and conservation actions should be focused primarily on those species and populations that are likely to lose the largest area of suitable climate and the largest number of known populations in the short-term.  相似文献   

14.
This research investigated how an individual’s endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that “localising” climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.  相似文献   

15.
Mountain regions are globally important areas for biodiversity but are subject to multiple human‐induced threats, including climate change, which has been more severe at higher elevations. We reviewed evidence for impacts of climate change on Holarctic mountain bird populations in terms of physiology, phenology, trophic interactions, demography and observed and projected distribution shifts, including effects of other factors that interact with climate change. We developed an objective classification of high‐elevation, mountain specialist and generalist species, based on the proportion of their breeding range occurring in mountain regions. Our review found evidence of responses of mountain bird populations to climate (extreme weather events, temperature, rainfall and snow) and environmental (i.e. land use) change, but we know little about either the underlying mechanisms or the synergistic effects of climate and land use. Long‐term studies assessing reproductive success or survival of mountain birds in relation to climate change were rare. Few studies have considered shifts in elevational distribution over time and a meta‐analysis did not find a consistent direction in elevation change. A meta‐analysis carried out on future projections of distribution shifts suggested that birds whose breeding distributions are largely restricted to mountains are likely to be more negatively impacted than other species. Adaptation responses to climate change rely mostly on managing and extending current protected areas for both species already present, and for expected colonizing species that are losing habitat and climate space at lower elevation. However, developing effective management actions requires an improvement in the current knowledge of mountain species ecology, in the quality of climate data and in understanding the role of interacting factors. Furthermore, the evidence was mostly based on widespread species rather than mountain specialists. Scientists should provide valuable tools to assess the status of mountain birds, for example through the development of a mountain bird population index, and policy‐makers should influence legislation to develop efficient agri‐environment schemes and forestry practices for mountain birds, as well as to regulate leisure activities at higher elevations.  相似文献   

16.
Species distribution modelling is gaining popularity due to significant habitat shifts in many plant and animal species caused by climate change. This issue is particularly pressing for species that provide significant ecosystem goods and services. A prominent case is the valuable African rosewood tree (Pterocarpus erinaceus) that is threatened in sub-Saharan Africa, while its present distribution, habitat requirements and the impact of climate change are not fully understood. This native species naturally occurs in various savanna types, but anthropogenic interventions have considerably reduced its natural populations in the past decades. In this study, ensemble modelling was used to predict the current and future distribution potential of the species in Burkina Faso. Fifty-four environmental variables were selected to describe its distribution in the years 2050 and 2070 based on the greenhouse gas concentration trajectories RCP4.5 and 8.5, and the general circulation models CNRM-CM5 and HadGEM2-CC. A network of protected areas in Burkina Faso was also included to assess how many of the suitable habitats may contribute to the conservation of the species. The factors isothermality (31%), minimum temperature of coldest month (31%), pH in H2O at horizon 0–5 cm (11%), silt content at horizon 60–100 cm (9.2%) and precipitation of warmest quarter (8%) were the most influential distribution drivers for the species. Under current climate conditions, potentially highly suitable habitats cover an area of 129,695 km2, i.e., 47% of Burkina Faso. The projected distribution under RCP4.5 and 8.5 showed that this area will decrease, and that the decline of the species will be pronounced. The two models used in this study, forecast a habitat loss of up to 61% for P. erinaceus. Hence, development and implementation of a conservation programme are required to save the species in its native range. This study will help land managers prioritise areas for protection of the species, and avoid introducing it to inappropriate areas unless suitable conditions are artificially created through the management options applied.  相似文献   

17.
It is anticipated that future climatic warming following the currently enhanced greenhouse effect will change the distribution limits of many vascular plant species. Using annual accumulated respiration equivalents, calculated from January and July mean temperatures and total annual precipitation, simple presence–absence response surface plots are constructed for 1521 native vascular-plant species in 229 75×75-km grid squares within Fennoscandia. The contemporary occurrences in relation to present-day climate and to predicted changes in climate (and hence annual accumulated respiration equivalents) are used to predict possible future immigrations and extinctions within each grid square. The percentage of potential change in species richness for each grid square is estimated from these predictions. Results from this study suggest a mean increase in species richness per grid square of 26%. Increases in species richness are greatest in the southern parts of the alpine/boreal regions in Fennoscandia. There are ten species that potentially may become extinct in Fennoscandia as a result of predicted climatic warming. Possible conservation strategies to protect such endangered species are outlined.  相似文献   

18.
There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.  相似文献   

19.
Human-induced climate change is increasingly recognized as a fundamental driver of biological processes and patterns. Historic climate change is known to have caused shifts in the geographic ranges of many taxa and future climate change is expected to result in even greater redistributions of species. As a result, predicting the impact of climate change on future patterns of biodiversity will greatly aid conservation planning. Using the North American Breeding Bird Survey and Audubon Christmas Bird Count, two of the most comprehensive continental datasets of vertebrates in the world, and correlative distribution modeling, we assessed geographic range shifts for 588 North American bird species during both the breeding and non-breeding seasons under a range of future emission scenarios (SRES A2, A1B, B2) through the end of the century. Here we show that 314 species (53%) are projected to lose more than half of their current geographic range across three scenarios of climate change through the end of the century. For 126 species, loss occurs without concomitant range expansion; whereas for 188 species, loss is coupled with potential to colonize new replacement range. We found no strong associations between projected climate sensitivities and existing conservation prioritizations. Moreover, species responses were not clearly associated with habitat affinities, migration strategies, or climate change scenarios. Our results demonstrate the need to include climate sensitivity into current conservation planning and to develop adaptive management strategies that accommodate shrinking and shifting geographic ranges. The persistence of many North American birds will depend on their ability to colonize climatically suitable areas outside of current ranges and management actions that target climate adaptation.  相似文献   

20.
As North American species’ ranges shift northward in response to climate change, populations isolated in high-elevation habitat “islands” at the southern edge of distributions are predicted to decrease in size or be extirpated. Levels of genetic structure and gene flow and the number of private alleles held within these peripheral populations can be used as a measure of the potential loss of genetic diversity due to climate change. We use GIS-based climate niche models to project geographic distributions of 15 boreal forest bird species for the year 2080 under two carbon emissions scenarios to predict the extent to which ranges will shift, leading to the extirpation of isolated populations at the southern periphery of the boreal forest. Breeding distributions of nearly all boreal bird species are predicted to expand as they shift northward, but will dramatically decrease or be completely lost from mountain populations in New York, Vermont, and New Hampshire by 2080. To examine the effect of these shifts on gene pools of migratory bird species we genotyped 178 blackpoll warblers (Setophaga striata) at nine microsatellite loci, sampling four imperiled high-elevation populations and four northern populations. In S. striata 10.4 % of microsatellite alleles were confined to populations expected to be lost due to climate change. However, these accounted for a nonsignificant percent of the genetic structure, and loss of these alleles would not significantly erode species heterozygosity or allelic richness. Our results indicate that isolated southern populations of S. striata, and possibly other migratory species with high gene flow, do not represent genetically isolated, independently evolving units. Efforts to mitigate the effect of climate change on boreal forest birds should focus on species in which peripheral populations harbor significant genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号