首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Critical thermal maximum (CTM) and loss of righting response (LRR) were determined in seven estuarine fishes. The critical thermal maxima (CTM) ranged from 39.5°C to 44.5°C for fishes acclimated to 28°C. Lates calcarifer and Liza dussumeri had the highest CTM (44.5°C) and Siganus javus had the lowest CTM (39.5°C). The rate of change of CTM due to thermal acclimation was determined for Etroplus suratensis and Therapon jarbua. The CTM for E.suratensis increased from 39.75°C to 43.5°C on a 15°C increase in acclimation temperature and the CTM of T. jarbua shifted from 40.75°C to 43.15°C on a 15°C increase in acclimation. The acclimation response ratio (ARR) as a result of increasing the acclimation temperature was about 0.25 in E. suratensis and 0.2 in T. jarbua.  相似文献   

3.
The modern orders of mammals, Artiodactyla, Perissodactyla and Primates (APP taxa), first appear in the fossil record at the Paleocene-Eocene boundary, c. 55 million years ago. Their appearance on all three northern continents has been linked to diversification and dispersal in response to rapid environmental change at the beginning of a worldwide 100 000-200 000-year Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion. As I discuss here, global environmental events such as the PETM have had profound effects on evolution in the geological past and must be considered when modeling the history of life. The PETM is also relevant when considering the causes and consequences of global greenhouse warming.  相似文献   

4.
Marsupials, unlike placental mammals, are believed to be unable to increase heat production and thermal performance after cold-acclimation. It has been suggested that this may be because marsupials lack functional brown fat, a thermogenic tissue, which proliferates during cold-acclimation in many placentals. However, arid zone marsupials have to cope with unpredictable, short-term and occasionally extreme changes in environmental conditions, and thus they would benefit from an appropriate physiological response. We therefore investigated whether a sequential two to four week acclimation in Sminthopsis macroura (body mass approx. 25 g) to both cold (16 degrees C) and warm (26 degrees C) ambient temperatures affects the thermal physiology of the species. Cold-acclimated S. macroura were able to significantly increase maximum heat production (by 27%) and could maintain a constant body temperature at significantly lower effective ambient temperatures (about 9 degrees C lower) than when warm-acclimated. Moreover, metabolic rates during torpor were increased following cold-acclimation in comparison to warm-acclimation. Our study shows that, despite the lack of functional brown fat, short-term acclimation can have significant effects on thermoenergetics of marsupials. It is likely that the rapid response in S. macroura reflects an adaptation to the unpredictability of the climate in their habitat.  相似文献   

5.
6.
7.
8.
Although it is well known that the Paleocene/Eocene thermal maximum (PETM) coincided with a major benthic foraminiferal extinction event, the detailed pattern of the faunal turnover has not yet been clarified. Our high-resolution benthic foraminiferal and carbon isotope analyses at the low latitude Pacific Ocean Shatsky Rise have revealed the following record of major faunal transitions: (1) An initial turnover which involved the benthic foraminiferal extinction event (BFE). The BFE, marked by a sharp transition from Pre-extinction fauna to Disaster fauna represented by small-sized Bolivina gracilis, expresses the onset of the PETM and the abrupt extinction of about 30% of taxa. This faunal transition lasted about 45-74 kyr after the initiation of the PETM and was followed by: (2) the appearance of Opportunistic fauna represented by Quadrimorphina profunda, which existed for about 74-91 kyr after the initiation of the PETM. These two faunas, which appeared after the extinction event, are characterized by low diversity and dwarfism, possibly due to lowered oxygen condition and decreased surface productivity. The second pronounced turnover involved the gradual recovery from Opportunistic Fauna to the establishment of Recovery fauna, which coincided with the recovery about 83-91 kyr after its initiation.  相似文献   

9.
In this paper Cupressaceae pollen season onset, severity, maximum value and maximum value date, have been studied for 15 consecutive years (1982–1996). The data set was obtained using a Hirst spore-trap (Burkard Manufacturing). In order to determine the influence of the previous months’ meteorological variables on Cupressaceae season’s parameters, the sums of maximum, average and minimum temperatures, and total rainfall for the months of October, November and December were used as independent variables in predictive formulae built by multiple regression analyses. The variance explained percentage by regression analyses varied between 60 and 87%. Total rainfall in the months prior to anthesis and temperature (particularly minimum temperature) are important factors to consider in forecasting models of Cupressaceae pollen season parameters, but meteorological conditions at the time of pollen production are also important and can modify the pre-established potential of pollination.  相似文献   

10.
We analyze the equilibrium behavior of deterministic haploid mutation-selection models. To this end, both the forward and the time-reversed evolution processes are considered. The stationary state of the latter is called the ancestral distribution, which turns out as a key for the study of mutation-selection balance. We find that the ancestral genotype frequencies determine the sensitivity of the equilibrium mean fitness to changes in the corresponding fitness values and discuss implications for the evolution of mutational robustness. We further show that the difference between the ancestral and the population mean fitness, termed mutational loss, provides a measure for the sensitivity of the equilibrium mean fitness to changes in the mutation rate. The interrelation of the loss and the mutation load is discussed. For a class of models in which the number of mutations in an individual is taken as the trait value, and fitness is a function of the trait, we use the ancestor formulation to derive a simple maximum principle, from which the mean and variance of fitness and the trait may be derived; the results are exact for a number of limiting cases, and otherwise yield approximations which are accurate for a wide range of parameters. These results are applied to threshold phenomena caused by the interplay of selection and mutation (known as error thresholds). They lead to a clarification of concepts, as well as criteria for the existence of error thresholds.  相似文献   

11.
Summary Parameters of thermal death were determined in 10 strains of yeast species whose maximum temperatures for growth (T max) ranged from 22 to 49°C. Arrhenius plots of the specific thermal death rates (k d) formed a positional sequence at the level of the experimental points that corrresponded in all but one case to the sequence of the respective T max values. Extrapolated k d values at higher or lower temperatures no longer formed this sequence.The correlation of the temperature functions with T max could be characterized in terms of a new activation parameter, for which the name thermal death activation constant is introduced. It has the following form: T.D.A. – S where H and S are respectively the apparent heat and entropy of activation of thermal death and n is the number of degrees above T max (expressed in °K) at which the T.D.A. constant exists.Seven mesophilic yeasts had a T.D.A. constant between 72 and 79 calxmol-1 degree-1 at n values between 1 and 4°. This suggested that the destructive process that limits k d in these strains is of the same species as one that contributes to the establishment of T max. Two psychrophilic yeasts apparently had a similar T.D.A. constant but at a high n value (about 12.5°C) which suggested that in these strains T max is governed by a destructive process unrelated to the one that underlies thermal death. The strain of the nearly thermophilic Hansenula angusta (T max 49°C) did not fit in either group.The significance of the T.D.A. constant is discussed and expressions for H and S in terms of bond activation parameters are proposed.  相似文献   

12.
本文研究了升高环境温度对小粉虫(Alphitobiusdiaperinus,鞘翅目拟步行虫总科)末龄幼虫、蛹以及成虫的失水和热敏性(临界热极值,Criticalthermalmaximum,CTmax)的影响。小粉虫成虫和蛹的CTmax值显著低于末龄幼虫(末龄幼虫:CTmax=48.5±0.5℃;蛹:CTmax=48.0±0.9℃;成虫:CTmax=47.8±1.1℃)。此外,成虫的适应性对其CTmax没有显著的影响。在20至60℃连续记录失水值中,三个龄期之间存在显著差异。随着超过临界点温度(约为40℃)的快速升高,末龄幼虫与成虫的失水程度相近。蛹具有明显低的失水速率,即使在温度高于40℃的情况下。当温度升高10℃时(25-35℃),会造成小粉虫蛹和成虫失水增加2.0倍和2.6倍,分别为:Q10=2.05±0.70和2.49±1.31,而幼虫则为3.52±1.27。当高于35-45℃时,幼虫和成虫失水增加甚快(Q10=6.85±1.90和8.51±2.32)。而蛹在高于35-45℃时失水也增加(Q10=3.76±1.83),但低于幼虫和成虫。小粉虫的蛹处于静止和不取食状态,代谢速率较低,其具有特殊结构的气孔能较好地保持关闭状态,且蛹的表皮由脂肪和蛋白质组成,以上诸因素可解释其失水减少的原因  相似文献   

13.
More than 25 new specimens of Teilhardina brandti, one of the oldest known euprimates, are reported from earliest Eocene strata of the southern Bighorn Basin, Wyoming. The new fossils include the first upper dentitions, a dentary showing the lower dental formula for the first time, and the first postcrania ascribed to T. brandti (tarsals and terminal phalanges). The elongated navicular and long talar neck suggest that T. brandti was an active arboreal quadruped, and the terminal phalanges constitute the oldest evidence for nails in Euprimates. Phylogenetic analysis incorporating the new data indicates that T. brandti is more derived than T. belgica but less so than T. americana. The hypothesis that Teilhardina originated in Asia (T. asiatica) and dispersed westward to Europe (T. belgica) and then to North America (T. brandti and T. magnoliana) during the earliest Eocene Paleocene-Eocene Thermal Maximum is most consistent with available evidence, including the relative age of fossil samples and their stage of evolution.  相似文献   

14.
Manifestations of profound perturbations in biogeochemical systems during the Paleocene-Eocene thermal maximum (PETM) include a prominent global negative δ13C and a pronounced increase in the relative abundance of dinoflagellate cysts (dinocysts) assigned to the genus Apectodinium. While motile representatives of Apectodinium were most likely thermophilic and heterotrophic, the underlying causes of this dinoflagellate response are not well understood. Here we provide new insight by examining the palynology, chemistry and calcareous nannoplankton across the PETM in a continental slope section at Tawanui, New Zealand. Across the PETM, marked changes in the relative abundance of Apectodinium vary antithetically with significant changes in the δ13C of carbonate and organic matter. In general, the high relative abundance of Apectodinium relates to enhanced concentrations of dinocysts, signifying a ‘bloom’ of Apectodinium in surface waters during the PETM. Changes in Apectodinium and δ13C records correspond to variations in many other parameters, including a smaller negative shift in bulk carbonate δ13C than expected, increased terrestrial palynomorphs, elevated TOC and C/N ratios, lower carbonate contents, higher SiO2 and Al2O3 contents, and lower Si/Al ratios. All of these variations can be explained by an increase in delivery of terrigenous material to the continental margin. A peak in the relative abundance of Glaphyrocysta dinocysts at the onset of the PETM may indicate greater down slope transport of neritic material. Changes in calcareous nannoplankton abundances suggest increased nutrient availability in surface waters during the PETM. The combined results show that Apectodinium-dominated assemblages, global perturbations in carbon isotopes and enhanced terrigenous delivery closely correspond in time at Tawanui. A sudden and massive carbon injection to the ocean-atmosphere system may have enhanced weathering and increased terrigenous inputs to continental margins during the PETM. We further suggest that these inputs caused the Apectodinium acme by elevating primary productivity in marginal seas.  相似文献   

15.
16.
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.  相似文献   

17.
Bill Shipley 《Oikos》2010,119(4):604-609
The papers in this Forum discussion debate various aspects of my maximum entropy model of community assembly. The questions raised centre around (1) the possible mechanisms generating the patterns predicted by my maxent model of community assembly, and (2) the appropriate statistical methods for testing the patterns. Here I briefly explain the proposed mechanistic basis of the model: natural selection occurring between individuals of different species. If trait differences are linked to differential demographic probabilities (i.e. fitness differences) then natural selection will constrain the average trait values found in the community and such average (‘community‐aggregated’) traits will then possess information that is translated into the maximum entropy probabilities. If community assembly is strictly neutral then the maxent model will have no predictive ability. This also justifies the null model, and the permutation test, proposed by Roxburgh and Mokany.  相似文献   

18.
While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2°C and 27.4°C, while the comfort zones are 22.4–28.9°C and 22.4–30.1°C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.  相似文献   

19.
High-speed actions are known to impact soccer performance and can be categorized into actions requiring maximal speed, acceleration, or agility. Contradictory findings have been reported as to the extent of the relationship between the different speed components. This study comprised 106 professional soccer players who were assessed for 10-m sprint (acceleration), flying 20-m sprint (maximum speed), and zigzag agility performance. Although performances in the three tests were all significantly correlated (p < 0.0005), coefficients of determination (r(2)) between the tests were just 39, 12, and 21% for acceleration and maximum speed, acceleration and agility, and maximum speed and agility, respectively. Based on the low coefficients of determination, it was concluded that acceleration, maximum speed, and agility are specific qualities and relatively unrelated to one another. The findings suggest that specific testing and training procedures for each speed component should be utilized when working with elite players.  相似文献   

20.
Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and physiological mechanism are needed to convincingly establish climate‐induced species shifts. We examine a 38‐year shift (1974–2012) in an elevation ecotone between two closely related ant species, Aphaenogaster picea and A. rudis. Even though A. picea and A. rudis are closely related with North American distributions that sometimes overlap, they also exhibit local‐ and regional‐scale differences in temperature requirements so that A. rudis is more southerly and inhabits lower elevations whereas A. picea is more northerly and inhabits high elevations. We find considerable movement by the warm‐habitat species upward in elevation between 1974 and 2012 with A. rudis, replacing the cold‐habitat species, A. picea, along the southern edge of the Appalachian Mountain chain in north Georgia, USA. Concomitant with the distribution shifts, regional mean and maximum temperatures remain steady (1974–2012), but minimum temperatures increase. We collect individuals from the study sites and subject them to thermal tolerance testing in a controlled setting and find that maximum and minimum temperature acclimatization occurs along the elevation gradient in both species, but A. rudis consistently becomes physiologically incapacitated at minimum and maximum temperatures 2 °C higher than A. picea. These results indicate that rising minimum temperatures allow A. rudis to move upward in elevation and displace A. picea. Given that Aphaenogaster ants are the dominant woodland seed dispersers in eastern deciduous forests, and that their thermal tolerances drive distinct differences in temperature‐cued synchrony with early blooming plants, these climate responses not only impact ant‐ant interactions, but might have wide implications for ant‐plant interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号