首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PROTACs have recently emerged as a novel paradigm in drug discovery. They can hijack existing biological machinery to selectively degrade proteins of interest, in a catalytic fashion. Here we describe the design, optimisation and biological activity of a set of novel PROTACs targeting the Janus kinase family (JAK1, JAK2, JAK3 and TYK2) of proximal membrane-bound proteins. The JAK family proteins display membrane localisation by virtue of their association with cytoplasmic tails of cytokine receptors, and there are no reports of a successful PROTAC strategy being deployed against this class of proteins. JAK PROTACs from two distinct JAK chemotypes were designed, optimising the physicochemical properties for each template to enhance cell permeation. These PROTACs are capable of inducing JAK1 and JAK2 degradation, demonstrating an extension of the PROTAC methodology to an unprecedented class of protein targets. A number of known ligase binders were explored, and it was found that PROTACs bearing an inhibitor of apoptosis protein (IAP) ligand induced significantly more JAK degradation over Von Hippel–Lindau (VHL) and Cereblon (CRBN) PROTACs. In addition, the mechanism of action of the JAK PROTACs was elucidated, and it was confirmed that JAK degradation was both IAP- and proteasome-dependent.  相似文献   

3.
Conventional genetic approaches have provided a powerful tool in the study of proteins. However, these techniques often preclude selective manipulation of temporal and spatial protein functions, which is crucial for the investigation of dynamic cellular processes. To overcome these limitations, a small molecule-based novel technology termed "PROteolysis TArgeting ChimeraS (PROTACs)" has been developed, targeting proteins for degradation at the post-translational level. Despite the promising potential of PROTACs to serve as molecular probes of complex signaling pathways, their design has not been generalized for broad application. Here, we present the first generalized approach for PROTAC design by fine-tuning the distance between the two participating partner proteins, the E3 ubiquitin ligase and the target protein. As such, we took a chemical approach to create estrogen receptor (ER)-α targeting PROTACs with varying linker lengths and the loss of the ER in cultured cells was monitored via western blot and fluorometric analyses. We found a significant effect of chain length on PROTAC efficacy, and, in this case, the optimum distance between the E3 recognition motif and the ligand was a 16 atom chain length. The information gathered from this experiment may offer a generalizable PROTAC design strategy to further the expansion of the PROTAC toolbox, opening new possibilities for the broad application of the PROTAC strategy in the study of multiple signaling pathways.  相似文献   

4.
Proteolysis-targeting chimaeras (PROTACs) have been developed to be an emerging technology for targeted protein degradation and attracted the favour of academic institutions, large pharmaceutical enterprises, and biotechnology companies. The mechanism is based on the inhibition of protein function by hijacking a ubiquitin E3 ligase for protein degradation. The heterobifunctional PROTACs contain a ligand for recruiting an E3 ligase, a linker, and another ligand to bind with the protein targeted for degradation. To date, PROTACs targeting ∼70 proteins, many of which are clinically validated drug targets, have been successfully developed with several in clinical trials for diseases therapy. In this review, the recent advances in PROTACs against clinically validated drug targets are summarised and the chemical structure, cellular and in vivo activity, pharmacokinetics, and pharmacodynamics of these PROTACs are highlighted. In addition, the potential advantages, challenges, and prospects of PROTACs technology in disease treatment are discussed.  相似文献   

5.
Chimeric molecules which effect intracellular degradation of target proteins via E3 ligase-mediated ubiquitination (e.g., PROTACs) are currently of high interest in medicinal chemistry. However, these entities are relatively large compounds that often possess molecular characteristics which may compromise oral bioavailability, solubility, and/or in vivo pharmacokinetic properties. Accordingly, we explored whether conjugation of chimeric degraders to monoclonal antibodies using technologies originally developed for cytotoxic payloads might provide alternate delivery options for these novel agents. In this report we describe the construction of several degrader-antibody conjugates comprised of two distinct ERα-targeting degrader entities and three independent ADC linker modalities. We subsequently demonstrate the antigen-dependent delivery to MCF7-neo/HER2 cells of the degrader payloads that are incorporated into these conjugates. We also provide evidence for efficient intracellular degrader release from one of the employed linkers. In addition, preliminary data are described which suggest that reasonably favorable in vivo stability properties are associated with the linkers utilized to construct the degrader conjugates.  相似文献   

6.
We have developed a heterobifunctional all-small molecule PROTAC (PROteolysis TArgeting Chimera) capable of inducing proteasomal degradation of the androgen receptor. This cell permeable PROTAC consists of a non-steroidal androgen receptor ligand (SARM) and the MDM2 ligand known as nutlin, connected by a PEG-based linker. The SARM-nutlin PROTAC recruits the androgen receptor to MDM2, which functions as an E3 ubiquitin ligase. This leads to the ubiquitination of the androgen receptor, and its subsequent degradation by the proteasome. Upon treatment of HeLa cells with 10microM PROTAC for 7h, we were able to observe a decrease in androgen receptor levels. This degradation is proteasome dependent, as it is mitigated in cells pre-treated with 10microM epoxomicin, a specific proteasome inhibitor. These results have implications for the potential study and treatment of various cancers with increased androgen receptor levels.  相似文献   

7.
Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules and allow selective protein degradation by addressing the natural ubiquitin proteasome system. As this new strategy of chemically induced protein degradation can serve as a biological tool and provides new possibilities for drug discovery, it has been applied to a variety of targets including (nuclear) receptors, kinases, and epigenetic proteins. A lot of PROTACs have already been designed in the field of epigenetics, and their synthesis and characterization highly contributed to structural optimization and improved mechanistic understanding of these molecules. In this review, we will discuss and summarize recent advances in PROTAC discovery with focus on epigenetic targets.  相似文献   

8.
Inhibitors of CDK4 and CDK6 have emerged as important FDA-approved treatment options for breast cancer patients. The properties and pharmacology of CDK4/6 inhibitor medicines have been extensively profiled, and investigations into the degradation of these targets via a PROTAC strategy have also been reported. PROTACs are a novel class of small-molecules that offer the potential for differentiated pharmacology compared to traditional inhibitors by redirecting the cellular ubiquitin–proteasome system to degrade target proteins of interest. We report here the preparation of palbociclib-based PROTACs that incorporate binders for three different E3 ligases, including a novel IAP-binder, which effectively degrade CDK4 and CDK6 in cells. In addition, we show that the palbociclib-based PROTACs in this study that recruit different E3 ligases all exhibit preferential CDK6 vs. CDK4 degradation selectivity despite employing a selection of linkers between the target binder and the E3 ligase binder.  相似文献   

9.
10.
Proteolytic targeting chimaeras (PROTACs) have been developed as an effective technology for targeted protein degradation. PROTACs are heterobifunctional molecules that can trigger the polyubiquitination of proteins of interest (POIs) by recruiting the ubiquitin-proteasome system, thereby inhibiting the intracellular level of POIs. To date, a variety of small-molecule PROTACs (CRBN, VHL, IAP, and MDM2-based PROTACs) have been developed. IAP-based PROTACs, also known as specific and nongenetic IAP-dependent protein erasers (SNIPERs), are used to degrade the target proteins closely related to diseases. Their structures consist of three parts, including target protein ligand, E3 ligase ligand, and the linker between them. So far, many SNIPERs have been extensively studied worldwide and have performed well in multiple diseases, especially cancer. In this review, we will present the most relevant advances in the field of SNIPERs and provide our perspective on the opportunities and challenges for SNIPERs to become therapeutic agents.  相似文献   

11.
Bruton tyrosine kinase (BTK) is an important target in oncology and (auto)immunity. Various BTK inhibitors have been approved or are currently in clinical development. A novel BTK inhibitor series was developed starting with a quinazoline core. Moving from a quinazoline to a quinoline core provided a handle for selectivity for BTK over EGFR and resulted in the identification of potent and selective BTK inhibitors with good potency in human whole blood assay. Furthermore, proof of concept of this series for BTK inhibition was shown in an in vivo mouse model using one of the compounds identified.  相似文献   

12.
PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously “undruggable” proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12–186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target “degradability.”  相似文献   

13.
As the first intracellular signaling molecule and the most frequently mutated oncogene, B-Raf represents an important target in cancer therapy. Here we report several pomalidomide hybrids acting as proteolysis targeting chimeras (PROTACs) for the degradation of B-Raf. Due to its high expression of B-Raf, MCF-7 cells are sensitive to these compounds. Among them, compound 2 can effectively kill cancer cells via inducing cells apoptosis. As a B-Raf degrader, compound 2 can accelerate the degradation of B-Raf by recruiting ubiquitin-proteasome system, and further affects the expression of Mcl-1, a downstream protein of B-Raf. The anticancer mechanism of compound 2 is quite different from its mother compound and cancer cells seem to be more sensitive to the degrader, hinting that degradation of B-Raf by PROTAC is a potential way for cancer treatment.  相似文献   

14.
The free fatty acid receptor 1 (FFA1) is being considered to be a novel anti-diabetic target based on its role in amplifying insulin secretion. We have previously identified several series of FFA1 agonists with different heterocyclic scaffolds. Herein, we describe the structural exploration of other heterocyclic scaffolds directed by drug-like physicochemical properties. Further structure-based design and chiral resolution provided the most potent compound 11 (EC50?=?7.9?nM), which exhibited improved lipophilicity (LogD7.4: 1.93), ligand efficiency (LE?=?0.32) and ligand lipophilicity efficiency (LLE?=?6.2). Moreover, compound 11 revealed an even better pharmacokinetic property than that of TAK-875 in terms of plasma clearance, maximum concentration, and plasma exposure. Although robust agonistic activity and PK profiles for compound 11, the glucose-lowering effects in vivo is not ideal, and the exact reason for in vitro/in vivo difference was worthy for further exploration.  相似文献   

15.
Bruton’s tyrosine kinase (BTK) has emerged as an attractive target related to B-lymphocytes dysfunctions, especially hematologic malignancies and autoimmune diseases. In our study, a series of diphenylaminopyrimidine derivatives bearing dithiocarbamate moieties were designed and synthesized as novel BTK inhibitors for treatment of B-cell lymphoma. Among all these compounds, 30ab (IC50 = 1.15 ± 0.19 nM) displays similar or more potent inhibitory activity against BTK than spebrutinib (IC50 = 2.12 ± 0.32 nM) and FDA approved drug ibrutinib (IC50 = 3.89 ± 0.57 nM), which is attributed to close binding of 30ab with BTK predicted by molecular docking. In particular, 30ab exhibits enhanced anti-proliferative activity against B-lymphoma cell lines at the IC50 concentration of 0.357 ± 0.02 μM (Ramos) and 0.706 ± 0.05 μM (Raji), respectively, almost 10-fold better than ibrutinib and spebrutinib. In addition, 30ab displays stronger selectivity on B-cell lymphoma over other cancer cell lines than spebrutinib. Furthermore, 30ab efficiently blocks BTK downstream pathways and results in apoptosis of cancer cells. In vivo xenograft model evaluation demonstrates the significant efficacy and broad safety margin of 30ab in treatment of B-cell lymphoma. We propose that compound 30ab is a candidate for further study and development based on our current findings.  相似文献   

16.
A novel series of 1,3,4-thiadiazole-thiazolone hybrids 5av were designed, synthesized, characterized, and evaluated against the basal and the microtubule (MT)-stimulated ATPase activity of Eg5. From the evaluated derivatives, 5h displayed the highest inhibition with an IC50 value of 13.2?µM against the MT-stimulated Eg5 ATPase activity. Similarly, compounds 5f and 5i also presented encouraging inhibition with IC50 of 17.2?µM and 20.2?µM, respectively. A brief structure–activity relationship (SAR) analysis indicated that 2-chloro and 4-nitro substituents on the phenyl ring of the thiazolone motif contributed significantly to enzyme inhibition. An in silico molecular docking study using the crystal structure of Eg5 further supported the SAR and reasoned the importance of crucial molecular protein–ligand interactions in influencing the inhibition of the ATPase activity of Eg5. The magnitude of the electron-withdrawing functionalities over the hybrids and the critical molecular interactions contributed towards higher in vitro potency of the compounds. The drug-like properties of the synthesized compounds 5av were also calculated based on the Lipinski’s rule of five and in silico computation of key pharmacokinetic parameters (ADME). Thus, the present work unveils these hybrid molecules as novel Eg5 inhibitors with promising drug-like properties for future development.  相似文献   

17.
Degrading pathogenic proteins by degrader technologies such as PROTACs (proteolysis-targeting chimeras) provides promising therapeutic strategies, but selective degradation of non-protein pathogenic biomolecules has been challenging. Here, we demonstrate a novel strategy to degrade non-protein biomolecules by autophagy-tethering compounds (ATTECs), using lipid droplets (LDs) as an exemplar target. LDs are ubiquitous cellular structures storing lipids and could be degraded by autophagy. We hypothesized that compounds interacting with both the LDs and the key autophagosome protein LC3 may enhance autophagic degradation of LDs. We designed and synthesized such compounds by connecting LC3-binding molecules to LD-binding probes via a linker. These compounds were capable of clearing LDs almost completely and rescued LD-related phenotypes in cells and in two independent mouse models with hepatic lipidosis. We further confirmed that the mechanism of action of these compounds was mediated through LC3 and autophagic degradation. Our proof-of-concept study demonstrates the capability of degrading LDs by ATTECs. Conceptually, this strategy could be applied to other protein and non-protein targets.Subject terms: Macroautophagy, Molecular biology  相似文献   

18.
Collagen degradation and proMMP-2 activation are major functions of MT1-MMP to promote cancer cell invasion. Since both processes require MT1-MMP homodimerization on the cell surface, herein we propose that the use of bifunctional inhibitors of this enzyme could represent an innovative approach to efficiently reduce tumor growth. A small series of symmetrical dimers derived from previously described monomeric arylsulfonamide hydroxamates was synthesized and tested in vitro on isolated MMPs. A nanomolar MT1-MMP inhibitor, compound 6, was identified and then submitted to cell-based assays on HT1080 fibrosarcoma cells. Dimer 6 reduced MT1-MMP-dependent proMMP-2 activation, collagen degradation and collagen invasion in a dose-dependent manner with better results even compared to its monomeric analogue 4. This preliminary study suggests that dimeric MT1-MMP inhibitors might be further developed and exploited as an alternative tool to reduce cancer cell invasion.  相似文献   

19.
We report the design and synthesis of a series of novel Bruton’s Tyrosine Kinase (BTK) inhibitors with a carboxylic acid moiety in the ribose pocket. This series of compounds has demonstrated much improved off-target selectivities including adenosine uptake (AdU) inhibition compared to the piperidine amide series. Optimization of the initial lead compound 4 based on BTK enzyme inhibition, and human peripheral blood mononuclear cell (hPBMC) and human whole blood (hWB) activity led to the discovery of compound 40, with potent BTK inhibition, reduced off target activities, as well as favorable pharmacokinetic profile in both rat and dog.  相似文献   

20.
A series of aryl carboxamide and benzylamino dispiro 1,2,4,5-tetraoxane analogues have been designed and synthesized in a short synthetic sequence from readily available starting materials. From this series of endoperoxides, molecules with in vitro IC50s versus Plasmodium falciparum (3D7) as low as 0.84?nM were identified. Based on an assessment of blood stability and in vitro microsomal stability, N205 (10a) was selected for rodent pharmacokinetic and in vivo antimalarial efficacy studies in the mouse Plasmodium berghei and Plasmodium falciparum Pf3D70087/N9 severe combined immunodeficiency (SCID) mouse models. The results indicate that the 4-benzylamino derivatives have excellent profiles with a representative of this series, N205, an excellent starting point for further lead optimization studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号