首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ginsenosides Re and Rg1 were transformed by recombinant β-glucosidase (Bgp1) to ginsenosides Rg2 and Rh1, respectively. The bgp1 gene consists of 2,496?bp encoding 831 amino acids which have homology to the glycosyl hydrolase families 3 protein domain. Using 0.1?mg enzyme ml(-1) in 20?mM sodium phosphate buffer at 37°C and pH 7.0, the glucose moiety attached to the C-20 position of ginsenosides Re and Rg1, was removed: 1?mg ginsenoside Re ml(-1) was transformed into 0.83?mg Rg2?ml(-1) (100% molar conversion) after 2.5?h and 1?mg ginsenoside Rg1?ml(-1) was transformed into 0.6?mg ginsenoside Rh1?ml(-1) (78% molar conversion) in 15?min. Using Bgp1 enzyme, almost all initial ginsenosides Re and Rg1 were converted completely to ginsenosides Rg2 and Rh1. This is the first report of the conversion of ginsenoside Re to ginsenoside Rg2 and ginsenoside Rg1 to ginsenoside Rh1 using the recombinant β-glucosidase.  相似文献   

2.
It was found that a lactase preparation from Penicillium sp. nearly quantitatively hydrolyzed ginsenosides Re and Rg1, which are major saponins in roots of Panax ginseng, to a minor saponin, 20(S)-ginsenoside Rh1 [6-O-beta-D-glucopyranosyl-20(S)-protopanaxatriol]. This is the first report on the enzymatic preparation of ginsenoside Rh1 with a high efficiency. This enzyme also readily hydrolyzed ginsenoside Rg2 to ginsenoside Rh1.  相似文献   

3.
In the present investigation, we successfully employed a cell-free extract of Esteya vermicola CNU 120806 to convert ginsenoside Rg3 to Rh2. Three important factors including pH, temperature and substrate concentration were optimized for the preparation of Rh2. The optimal condition was obtained as follows: 50°C, pH 5.0 and substrate concentration of 3 mg ml−1. The yield of conversion was up to 90.7%. In order to identify the specificity of the β-glucosidase activity of Esteya vermicola CNU 120806, ginsenoside Re (protopanaxatriol saponins) was treated under the same reaction system. Interestingly, no new metabolite was generated, which elucidated that the enzymatic process only occurred by hydrolysis of the terminal glucopyranosyl moieties at the C-3 carbon of ginsenoside Rg3. The crude enzyme extract can be used for commercial ginsenoside Rh2 preparation.  相似文献   

4.
Microbacterium esteraromaticum was isolated from ginseng field. The β-glucosidase gene (bgp1) from M. esteraromaticum was cloned and expressed in Escherichia coli BL21 (DE3). The bgp1 gene consists of 2,496 bp encoding 831 amino acids which have homology to the glycosyl hydrolase family 3 protein domain. The recombinant β-glucosidase enzyme (Bgp1) was purified and characterized. The molecular mass of purified Bgp1 was 87.5 kDa, as determined by SDS-PAGE. Using 0.1 mg ml−1 enzyme in 20 mM sodium phosphate buffer at 37°C and pH 7.0, 1.0 mg ml−1 ginsenoside Rb1 was transformed into 0.444 mg ml−1 ginsenoside Rg3 within 6 h. The Bgp1 sequentially hydrolyzed the outer and inner glucose attached to the C-20 position of ginsenosides Rb1. Bgp1 hydrolyzed the ginsenoside Rb1 along the following pathway: Rb1 → Rd → 20(S)-Rg3. This is the first report of the biotransformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 using the recombinant β-glucosidase.  相似文献   

5.
(20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH3-PPD) is a dammarane-type sapogenin showing anti-proliferative potential. In our study, two series of analogs substituted at the C-3 or C-3 and C-12 positions with fatty acids were prepared conveniently. The cytotoxic activity of these compounds was evaluated using four different human tumor cell lines (A549, Hela, HT-29 and MCF-7) and a normal cell line (IOSE144). As compared with 25-OCH3-PPD, compounds 1a, 1b, 2a and 2b showed better anti-proliferative activities against all tumor cell lines and all the derivatives, with low toxicities in the normal cell line. Compound 1a (C-3 monoformiate) exhibited the strongest activity with the IC50 value of 5.2 μM towards HT29 cells. The results indicated that the difference in the substituents may affect the anti-proliferative activity of the compounds. The longer the side chain of 25-OCH3-PPD is, the lower the anti-proliferative activity would be. This information may be useful for evaluating the structure–activity relationship of other dammarane-type sapogenins and for development of novel antineoplastic agents.  相似文献   

6.
The total saponin extract from the dried roots of Panax notoginseng (Burk.) F. H. Chen possesses immunological-adjuvant activities. Guided by in vivo immunological tests, further study on this fraction afforded three active dammarane-type saponins. Their structures were determined on the basis of chemical evidence and extensive spectroscopic methods, including 1D- and 2D-NMR. The novel compound (20S)-protopanaxatriol 20-O-beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranoside (1), and the two known compounds ginsenoside Rh4 (2) and notoginsenoside K (3) exhibited immunological-adjuvant activities on the humoral immune responses of ICR mice against ovalbumin (OVA).  相似文献   

7.
BackgroundGinsenoside Rh2(S) is a promising compound for the prevention of various kinds of cancers, inflammation, and diabetes. However, due to its low concentration (<0.02%), researchers are still trying to find an efficient glycoside hydrolase for the scaled-up production of Rh2(S).MethodThree glycoside hydrolases (BglBX10, Abf22-3, and BglSk) were cloned in Escherichia coli BL21 (DE3) and the expressed recombinant enzyme was used for the scaled-up production of Rh2(S) through the conversion of PPD-type (protopanaxadiol) major ginsenosides (Rb1, Rc, and Rd, except Rb2) extracted from Korean red ginseng. Specific and specialized bioconversion pathways were designed that evolved the initial bioconversion of PPD-mix → Rg3(S) → Rh2(S). The reaction was started with 50 mg/mL of PPD-mix, 20 mg/mL of BglBX10, Abf22-3, and BglSk in series, respectively. The process was completed in a 10 L jar fermenter with a 5 L working volume at 37 °C for 48 hrs.ResultsThe designed bioconversion pathways show that Abf22-3 and BglBX10 were responsible for the conversion of Rb1, Rc and Rd → Rg3(S), and then Rg3(S) was completely transformed to Rh2(S) by BglSk. As a result, 15.1 g of ginsenoside Rh2(S) with 98.0 ± 0.2% purity was obtained after strict purification using the Prep-HPLC system with a 100 φ diameter column. Additionally, BglSk was also investigated for its production activity with seven different kinds of PPD-mix type ginsenosides.ConclusionOur pilot data demonstrate that BglSk is a suitable enzyme for the gram unit production of ginsenoside Rh2(S) at the industrial level.  相似文献   

8.
To support pharmacokinetic studies of ginsenosides, a novel method to quantitatively analyze ginsenoside Rg3 (Rg3), its prosapogenin ginsenoside Rh2 (Rh2) and aglycone 20(S)-protopanaxadiol (ppd) in rat plasma was developed and validated. The method was based on gradient separation of ginsenosides present in rat plasma using high performance liquid chromatography (HPLC), followed by detection with electrospray ionization(ESI) mass spectrometry (MS) in negative ion mode with the mobile phase additive, ammonium chloride (500 microM). Differentiation of ginsenosides was achieved through simultaneous detection of the [M(+)Cl(-)] adduct of ginsenoside Rg3 and [M(+)Cl(-)] adducts of its deglycosylated metabolites Rh2 and ppd, and other ions after solid phase extraction (SPE). The /specific ions monitored were m/z 819.50 for Rg3, m/z 657.35 for Rh2, m/z 495.40 for ppd and m/z 799.55 for the internal standard (digitoxin). The mean recoveries for Rg3, Rh2 and ppd were 77.85, 82.65 and 98.33%, respectively using 0.1 ml plasma for extraction. The lower limits of quantification were 10.0, 2.0 and 8.0 ng/ml (equivalent to 0.1, 0.02 and 0.08 ng in each 10 microl injection onto the HPLC column) for Rg3, Rh2 and ppd, respectively. The method has been demonstrated to be highly sensitive and accurate for the determination of Rg3 and its metabolites in rat plasma.  相似文献   

9.
Ginsenoside Rg1 has been demonstrated to have cardiovascular protective effects. However, whether the cardioprotective effects of ginsenoside Rg1 are mediated by endoplasmic reticulum (ER) stress‐induced apoptosis remain unclear. In this study, among 80 male Wistar rats, 15 rats were randomly selected as controls; the remaining 65 rats received a diet rich in fat and sugar content for 4 weeks, followed by intraperitoneal injection of streptozotocin (STZ, 40 mg/kg) to establish a diabetes model. Seven days after STZ injection, 10 rats were randomly selected as diabetic model (DM) controls, 45 eligible diabetic rats were randomized to three treatment groups and administered ginsenoside Rg1 in a dosage of 10, 15 or 20 mg/kg/day, respectively. After 12 weeks of treatment, rats were killed and serum samples obtained to determine cardiac troponin (cTn)‐I. Myocardial tissues were harvested for morphological analysis to detect myocardial cell apoptosis, and to analyse protein expression of glucose‐regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and Caspase‐12. Treatment with ginsenoside Rg1 (10–20 mg/kg) significantly reduced serum cTnI levels compared with DM control group (all P < 0.01). Ginsenoside Rg1 (15 and 20 mg/kg) significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Haematoxylin and eosin and Masson staining indicated that ginsenoside Rg1 could attenuate myocardial lesions and myocardial collagen volume fraction. Additionally, ginsenoside Rg1 significantly reduced GRP78, CHOP, and cleaved Caspase‐12 protein expression in a dose‐dependent manner. These findings suggest that ginsenoside Rg1 appeared to ameliorate diabetic cardiomyopathy by inhibiting ER stress‐induced apoptosis in diabetic rats.  相似文献   

10.
Two new dammarane-type jujubogenin bisdesmosides, bacopasaponins E and F of biological interest have been isolated from the reputed Indian medicinal plant Bacopa monniera and defined as 3-O-[beta-D-glucopyranosyl(1 --> 3)[alpha-L-arabinofuranosyl(1 --> 2)]alpha-L-arabinopyranosyl]-20-O-(alpha-L-arabinopyranosyl) jujubogenin and 3-O-[beta-D-glucopyranosyl(1 --> 3)[alpha-L-arabinofuranosyl(1 --> 2)]beta-D-glucopyranosyl]-20-O-alpha-L-arabinopyranosyl) jujubogenin respectively by spectroscopic methods and some chemical transformations.  相似文献   

11.
Here we report a method capable of quantifying ginsenoside Rg3 in human plasma and urine. The method was validated over linear range of 2.5–1000.0 ng mL−1 for plasma and 2.0–20.0 ng mL−1 for urine using ginsenoside Rg1 as I.S. Compounds were extracted with ethyl acetate and analyzed by HPLC/MS/MS (API-4000 system equipped with ESI interface and a C18 column). The inter- and intra-day precision and accuracy of QC samples were ≤8.5% relative error and were ≤14.4% relative standard deviation for plasma; were ≤5.6% and ≤13.3% for urine. The Rg3 was stable after 24 h at room temperature, 3 freeze/thaw cycles and 131 days at −30 °C. This method has been applied to pharmacokinetic study of ginsenoside Rg3 in human.  相似文献   

12.
13.
20(S)-protopanaxadiol (PPD(S)) and 20(R)-protopanaxadiol (PPD(R)), the main metabolites of ginsenosides Rg3(S) and Rg3(R) in black ginseng, are potential candidates for anti-cancer therapy due to their pharmacological activities such as anti-tumor properties. In the present study, we report the preparation of PPD(S, R) by a combination of steaming and biotransformation treatments from ginseng. Aspergillus niger was isolated from soil and showed a strong ability to transform Rg3(S, R) into PPD(S, R) with 100% conversion. Furthermore, the enzymatic reactions were analyzed by reversed-phase HPLC, showing the biotransformation pathways: Rg3(S) → Rh2(S) → PPD(S) and Rg3(R) → Rh2(R) → PPD(R), respectively. In addition, 12 ginsenosides including 3 pairs of epimers, namely Rg3(S), Rg3(R), Rh2(S), Rh2(R), PPD(S) and PPD(R), were simultaneously determined by reversed-phase HPLC. Our study may be highly applicable for the preparation of PPD(S) and PPD(R) for medicinal purposes and also for commercial use.  相似文献   

14.
Jang S  Ryu JH  Kim DH  Oh S 《Neurochemical research》2004,29(12):2257-2266
Ameliorating effects of ginseng were observed on neuronal cell death associated with ischemia or glutamate toxicity. Ginseng saponins are transformed by intestinal microflora and the transformants would be absorbed from intestine. In the present study, we have investigated the effects of transformed ginsenoside Rg3, Rh2 and compound K on the modulation of NMDA receptor and GABAA receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using [3H]MK-801 binding, and GABAA receptor bindings were analyzed by using [3H]muscimol and [3H]flunitrazepam binding in rat brain slices. Ginsenoside Rg3, Rh2 and compound K were infused (10 g/10 l/h) into rat brain lateral ventricle for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML). The levels of [3H]MK-801 binding were highly decreased in almost all regions of frontal cortex and hippocampus by ginsenoside Rh2 and compound K. The levels of [3H]muscimol binding were elevated in part of frontal cortex and granule layer of cerebellum by the treatment of ginsenoside Rh2 and compound K. However, the [3H]flunitrazepam binding was not modulated by any tested ginsenosides. Ginsenoside Rh2 and compound K induced the downregulation of the [3H]MK-801 binding as well as upregulation of the and [3H]muscimol binding in a region-specific manner after prolonged infusion into lateral ventricle. However, ginsenoside Rg3 did not show the significant changes of ligand bindings. In addition, ginsenoside Rh2 decreased the expression of nNOS in the hippocampus although Rg3 decreased the expression in the cortex. These results suggest that biotransformed ginsenoside Rh2 and compound K could play an important role in the biological activities in the central nervous systems and neurodegenerative disease.  相似文献   

15.
Two new beta-xylosyl derivatives of ginsenoside Re, 20(S)-protopanaxatriol 6-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-xylopyranosyl-(1 --> 4)]-beta-D-glucopyranosyl-20-O-beta-D-glucopyranoside and 20(S)-protopanaxatriol 6-O-alpha-L-rhamnopyranosyl-(1 --> 2)-[beta-D-xylopyranosyl-(1 --> 6)]-beta-D-glucopyranosyl-20-O-beta-D-glucopyranoside, were respectively synthesized from p-nitrophenyl beta-D-xylopyranoside and phenyl beta-D-xylopyranoside as donors and ginsenoside Re as the acceptor in 25% acetone and acetonitrile by a cellulase preparation from Trichoderma viride and a beta-galactosidase preparation from Aspergillus oryzae. The latter enzyme preparation also catalyzed the hydrolysis of ginsenoside Re to the minor saponin, ginsenoside Rg2.  相似文献   

16.
20(S)-protopanaxadiol (PPD)-type ginsenosides are generally believed to be the most pharmacologically active components of Panax ginseng. These compounds induce apoptotic cell death in various cancer cells, which suggests that they have anti-cancer activity. Anti-angiogenesis is a promising therapeutic approach for controlling angiogenesis-related diseases such as malignant tumors, age-related macular degeneration, and atherosclerosis. Studies showed that 20(S)-PPD at low concentrations induces endothelial cell growth, but in our present study, we found 20(S)-PPD at high concentrations inhibited cell growth and mediated apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism by which high concentrations of 20(S)-PPD mediate endothelial cell apoptosis remains elusive. The present current study investigated how 20(S)-PPD induces apoptosis in HUVECs for the first time. We found that caspase-9 and its downstream caspase, caspase-3, were cleaved into their active forms after 20(S)-PPD treatment. Treatment with 20(S)-PPD decreased the level of Bcl-2 expression but did not change the level of Bax expression. 20(S)-PPD induced endoplasmic reticulum stress in HUVECs and stimulated UPR signaling, initiated by protein kinase R-like endoplasmic reticulum kinase (PERK) activation. Total protein expression and ATF4 nuclear import were increased, and CEBP-homologous protein (CHOP) expression increased after treatment with 20(S)-PPD. Furthermore, siRNA-mediated knockdown of PERK or ATF4 inhibited the induction of CHOP expression and 20(s)-PPD-induced apoptosis. Collectively, our findings show that 20(S)-PPD inhibits HUVEC growth by inducing apoptosis and that ATF4 expression activated by the PERK-eIF2α signaling pathway is essential for this process. These findings suggest that high concentrations of 20(S)-PPD could be used to treat angiogenesis-related diseases.  相似文献   

17.
《Process Biochemistry》2010,45(8):1319-1324
To obtain microorganisms for the microbial conversion of ginsenosides in red ginseng powder (RGP), Lactobacillus species (M1–M4 and P1–P4) were isolated from commercial ginseng products. Strain M1 was determined to be L. plantarum by 16S rRNA sequencing. Red ginseng powder (RGP) fermented by L. plantarum M1 had a high total content of ginsenosides (142.4 mg/g) as compared to the control (121.8 mg/g). In particular, the ginsenoside metabolites Rg3, Rg5, Rk1, Compound K (CK), Rh1, and Rg2 showed a high level in the fermented RGP (65.5 mg/g) compared to the control (32.7 mg/g). During fermentation for 7 days, total sugar content decreased from 8.55 mg/g to 4 mg/g, uronic acid content reached its maximum (53.43 μg/g) at 3 days, and total ginsenoside content increased to 176.8 mg/g at 4 days. In addition, ginsenoside metabolites increased from 38.0 mg/g to 83.4 mg/g at 4 days of fermentation. Using everted instestinal sacs of rats, the fermented red ginseng showed a high transport level (10.3 mg of polyphenols/g sac) compared to non-fermented red ginseng (6.67 mg of polyphenols/g sac) after 1 h. These results confirm that fermentation with L. plantarum M1 is very useful for preparing minor ginsenoside metabolites while being safe for foods.  相似文献   

18.
《Phytomedicine》2014,21(7):998-1003
Ginsenoside Rg1 is regarded as one of main bioactive compounds responsible for pharmaceutical actions of ginseng with little toxicity and has been shown to have possibly neuroprotective effects. However, the mechanism of its neuroprotection for acute ischemic stroke is still elusive. The purpose of present study is thus to assess the neuroprotective effects of the ginsenoside Rg1 against blood brain barrier disruption and neurological injury in a rat model of cerebral ischemia/reperfusion, and then to explore the mechanisms for these neuroprotective effects by targeting aquaporin 4. Focal cerebral ischemia was induced by middle cerebral artery occlusion. Neurological examinations were performed by using Longa's 5-point scale. Evans blue dye was used to investigate the effects of ginsenoside Rg1 on blood brain barrier permeability. Immunohistochemical analysis and real-time fluorescence quantitative polymerase chain reaction were used to assess aquaporin 4 expression. As a result, general linear model with repeated measures analysis of variance for neurological scores at 5 repeated measures showed that ginsenoside Rg1-treated group could significantly reduce the changing trend of neurological deficit scores when compared with the middle cerebral artery occlusion model group (p < 0.05). Compared with the middle cerebral artery occlusion model group, ginsenoside Rg1 group has significantly decreased Evans blue content and reduced aquaporin 4 expression at each time point (p < 0.05). In conclusion, ginsenoside Rg1 as a ginsenoside neuroprotective agent could improve neurological injury, attenuate blood brain barrier disruption and downregulate aquaporin 4 expression induced by cerebral ischemia/reperfusion insults in rats.  相似文献   

19.
一种真菌对人参皂苷Rg3的转化   总被引:8,自引:0,他引:8  
[目的]筛选长白山人参土壤中的活性微生物,转化人参总皂苷及单体人参皂苷产生稀有抗肿瘤成份.[方法]从长白山人参根际土壤中分离各类菌株,对人参总皂苷及单体人参皂苷进行微生物转化,并通过硅胶柱层析等方法对转化产物进行分离纯化,采用波谱解析及理化常数对其进行结构鉴定;结合菌落形态、产孢结构、孢子形态特征以及菌株ITS rDNA核酸序列分析,对活性菌株进行鉴定.[结果]从长白山人参根际土壤中分离各类真菌菌株68株,有12株菌株对人参总皂苷有转化活性,其中菌株SYP2353对二醇组人参皂苷Rg3具有较强的转化活性.[结论]阳性菌株SYP2353被鉴定为疣孢漆斑菌(Myrothecium verrucaria),能将人参皂苷Rg3转化为稀有人参皂苷Rh2及二醇组人参皂苷苷元PPD,为稀有人参皂苷Rh2的制备提供了新的方法.  相似文献   

20.
Thirty-two new derivatives of cerpegin (1,1,5-trimethylfuro[3,4-c]pyridine-3,4-dione) were designed and synthesized in high yield by a new method, combining several C1 and N5 substituents. All compounds were tested for their inhibitory effect on the CT-L, T-L and PA proteolytic activities of a purified mammalian 20S proteasome. Only one molecule inhibited both CT-L and PA activities. Sixteen molecules specifically inhibited PA at the micromolar range, out of which fourteen had IC50 values around 5 μM and two had IC50 values closer to 2 μM. Except in one case, neither calpain I nor cathepsin B was inhibited. In silico docking suggests a unique mode of binding of the most efficient compounds to the β1 catalytic site (PA activity) in relation to the chemical nature of C1 substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号