首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUN13837 (1), a fibroblast growth factor receptor modulator, has been an attractive candidate for treating neurodegenerative diseases. However, one of its metabolites, N-benzyl-4-(methylamino)piperidine (BMP), turned out to possess phospholipidosis-inducing potential (PLIP) in vitro. To obtain SUN13837 analogs with reduced phospholipidosis risk, we replaced BMP with other diamines possessing low PLIP. Our effort led to the discovery of compound 6 with increased efficacy. Further structural modifications to reduce hydrogen bond donors afforded 17 with improved brain exposure. Oral administration of 17 at 1 mg/kg once daily for 10 days showed enhanced recovery of coordinated movement in a rat acute stroke model, suggesting that it is a promising follow-up compound for 1 with reduced risk of phospholipidosis.  相似文献   

2.
Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC50 values of the inhibitors in normal fibroblasts to the IC50 values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity.  相似文献   

3.
Natural products are universally recognized to contribute valuable chemical diversity to the design of molecular screening libraries. The analysis undertaken in this work, provides a foundation for the generation of fragment screening libraries that capture the diverse range of molecular recognition building blocks embedded within natural products. Physicochemical properties were used to select fragment-sized natural products from a database of known natural products (Dictionary of Natural Products). PCA analysis was used to illustrate the positioning of the fragment subset within the property space of the non-fragment sized natural products in the dataset. Structural diversity was analysed by three distinct methods: atom function analysis, using pharmacophore fingerprints, atom type analysis, using radial fingerprints, and scaffold analysis. Small pharmacophore triplets, representing the range of chemical features present in natural products that are capable of engaging in molecular interactions with small, contiguous areas of protein binding surfaces, were analysed. We demonstrate that fragment-sized natural products capture more than half of the small pharmacophore triplet diversity observed in non fragment-sized natural product datasets. Atom type analysis using radial fingerprints was represented by a self-organizing map. We examined the structural diversity of non-flat fragment-sized natural product scaffolds, rich in sp3 configured centres. From these results we demonstrate that 2-ring fragment-sized natural products effectively balance the opposing characteristics of minimal complexity and broad structural diversity when compared to the larger, more complex fragment-like natural products. These naturally-derived fragments could be used as the starting point for the generation of a highly diverse library with the scope for further medicinal chemistry elaboration due to their minimal structural complexity. This study highlights the possibility to capture a high proportion of the individual molecular interaction motifs embedded within natural products using a fragment screening library spanning 422 structural clusters and comprised of approximately 2800 natural products.  相似文献   

4.
The group IV cytosolic phospholipase A(2) (cPLA(2)) has been localized to the nucleus (M. R. Sierra-Honigmann, J. R. Bradley, and J. S. Pober, Lab. Investig. 74:684-695, 1996) and is known to translocate from the cytosolic compartment to the nuclear membrane (S. Glover, M. S. de Carvalho, T. Bayburt, M. Jonas, E. Chi, C. C. Leslie, and M. H. Gelb, J. Biol. Chem. 270:15359-15367, 1995; A. R. Schievella, M. K. Regier, W. L. Smith, and L. L. Lin, J. Biol. Chem. 270:30749-30754, 1995). We hypothesized that nuclear proteins interact with cPLA(2) and participate in the functional effects of this translocation. We have identified a nuclear protein, cPLA(2)-interacting protein (PLIP), a splice variant of human Tip60, which interacts with the amino terminal region of cPLA(2). Like Tip60, PLIP cDNA includes the MYST domain containing a C2HC zinc finger and well-conserved similarities to acetyltransferases. Both PLIP and Tip60 coimmunoprecipitate and colocalize with cPLA(2) within the nuclei of transfected COS cells. A polyclonal antibody raised to PLIP recognizes both PLIP and Tip60. Endogenous Tip60 and/or PLIP in rat mesangial cells is localized to the nucleus in response to serum deprivation. Nuclear localization coincides temporally with apoptosis. PLIP expression, mediated by adenoviral gene transfer, potentiates serum deprivation-induced prostaglandin E(2) (PGE(2)) production and apoptosis in mouse mesangial cells from cPLA(2)(+/+) mice but not in mesangial cells derived from cPLA(2)(-/-) mice. Thus PLIP, a splice variant of Tip60, interacts with cPLA(2) and potentiates cPLA(2)-mediated PGE(2) production and apoptosis.  相似文献   

5.
Recent work has indicated that the H-2 histocompatibility complex on chromosome 17 influences the degree of glucocorticoid-induced teratogenicity and anti-inflammatory response. Since both of these hormonal actions appear to be mediated by the induction of phospholipase A2-inhibitory proteins (PLIP), the influence of the H-2 complex on the induction of PLIP by glucocorticoids in thymocytes and embryonic palates has been investigated. Analysis of dexamethasone-induced PLIP by Sephadex G-100 revealed four peaks of mol wt 55,000, 40,000, 28,000 and 15,000 in mouse thymocytes and from one to three of these PLIPs in mouse embryonic palates. The 55,000 mol wt PLIP comprised 50-60% of the total activity. The total amount of dexamethasone-induced PLIP is significantly higher in B10.A (H-2a) thymocytes than that in thymocytes of their congenic resistant partners, B10 (H-2b). The induced level of PLIP in the embryonic palates treated with dexamethasone is also significantly higher in the H-2a congenic strains with either the A or B background (AWy or B10.A) than that in their resistant partners (A.BY or B10). Thus, both susceptibility to glucocorticoid-induced cleft palate and the production of PLIP by this hormone are influenced by the H-2 complex.  相似文献   

6.
A PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi   总被引:3,自引:0,他引:3  
Phosphoinositides play important roles as signaling molecules in different cell compartments by regulating the localization and activity of proteins through their interaction with specific domains. The activity of these lipids depends on which sites on the inositol ring are phosphorylated. Signaling pathways dependent on phosphoinositides phosphorylated at the D3 position of this ring (3-phosphoinositides) are negatively regulated by 3-phosphoinositide-specific phosphatases that include PTEN and myotubularin. Using the conserved PTEN catalytic core motif, we have identified a new protein in the Dictyostelium genome called phospholipid-inositol phosphatase (PLIP), which defines a new subfamily of phosphoinositide phosphatases clearly distinct from PTEN or other closely related proteins. We show that PLIP is able to dephosphorylate a broad spectrum of phosphoinositides, including 3-phosphoinositides. In contrast to previously characterized phosphoinositide phosphatases, PLIP has a preference for phosphatidylinositol 5-phosphate, a newly discovered phosphoinositide. We found that PLIP is localized in the Golgi, with its phosphatase domain facing the cytoplasmic compartment. PLIP null cells created via homologous recombination are unable to effectively aggregate to form multicellular organisms at low cell densities. The presence of PLIP in the Golgi suggests that it may be involved in membrane trafficking.  相似文献   

7.
Optimization of the surface charges is a promising strategy for increasing thermostability of proteins. Electrostatic contribution of ionizable groups to the protein stability can be estimated from the differences between the pKa values in the folded and unfolded states of a protein. Using this pKa-shift approach, we experimentally measured the electrostatic contribution of all aspartate and glutamate residues to the stability of a thermophilic ribosomal protein L30e from Thermococcus celer. The pKa values in the unfolded state were found to be similar to model compound pKas. The pKa values in both the folded and unfolded states obtained at 298 and 333 K were similar, suggesting that electrostatic contribution of ionizable groups to the protein stability were insensitive to temperature changes. The experimental pKa values for the L30e protein in the folded state were used as a benchmark to test the robustness of pKa prediction by various computational methods such as H++, MCCE, MEAD, pKD, PropKa, and UHBD. Although the predicted pKa values were affected by crystal contacts that may alter the side-chain conformation of surface charged residues, most computational methods performed well, with correlation coefficients between experimental and calculated pKa values ranging from 0.49 to 0.91 (p<0.01). The changes in protein stability derived from the experimental pKa-shift approach correlate well (r = 0.81) with those obtained from stability measurements of charge-to-alanine substituted variants of the L30e protein. Our results demonstrate that the knowledge of the pKa values in the folded state provides sufficient rationale for the redesign of protein surface charges leading to improved protein stability.  相似文献   

8.
The design, synthesis, and SAR of cyclic diamines as novel γ secretase modulators (GSMs) are presented in this Letter. Starting from information in the literature and in-house cyclic diamines library, we have found a 3(S)-aminopiperidine as a potent structure for lowering Aβ42 production both in vitro and in vivo.  相似文献   

9.
A PTEN-like phosphatase with a novel substrate specificity   总被引:1,自引:0,他引:1  
We show that a novel PTEN-like phosphatase (PLIP) exhibits a unique preference for phosphatidylinositol 5-phosphate (PI(5)P) as a substrate in vitro. PI(5)P is the least characterized member of the phosphoinositide (PI) family of lipid signaling molecules. Recent studies suggest a role for PI(5)P in a variety of cellular events, such as tumor suppression, and in response to bacterial invasion. Determining the means by which PI(5)P levels are regulated is therefore key to understanding these cellular processes. PLIP is highly enriched in testis tissue and, similar to other PI phosphatases, exhibits poor activity against several proteinaceous substrates. Despite a recent report suggesting a role for PI(5)P in the regulation of Akt, the overexpression of wild-type or catalytically inactive PLIP in Chinese hamster ovary-insulin receptor cells or a dsRNA-mediated knockdown of PLIP mRNA levels in Drosophila S2 cells does not alter Akt activity or phosphorylation. The unique in vitro catalytic activity and detailed biochemical and kinetic analyses reported here will be of great value in our continued efforts to identify in vivo substrate(s) for this highly conserved phosphatase.  相似文献   

10.
Glu35 in chicken lysozyme has an abnormally high pKa (6.1) partly due to the hydrophobic environment provided by Trp108. The relationship between protein stability and abnormal pKa was investigated in detail by using mutant lysozymes in which Glu35 was replaced by undissociable residues and an oppositely ionizable residue. It was found that lysozyme was stabilized at alkaline pH range by the replacement of Glu35 with an undissociable residue, Gln (E35Q lysozyme) or Al (E35A lysozyme). On the other hand, when Glu35 was replaced by His (E35H lysozyme), which could have an opposite charge to Glu by ionization, the introduced His35 was found to have an abnormally low pKa (3.6), leading to the destabilization of lysozyme at acidic pH. These observations are completely consistent with the situation that the environment around Glu35 is highly hydrophobic and therefore the placement of either a positive or negative charge in such an environment leads to destabilization of lysozyme. These observations also indicate that the replacement of an acidic residue having abnormally high pKa or a basic residue having abnormally low pKa by an undissociable residue is a very efficient and general method for stabilization of a protein.  相似文献   

11.
Substrate specificity of uptake of diamines in mouse brain slices   总被引:6,自引:0,他引:6  
Brain slices upon incubation accumulate diamines (cadaverine and putrescine) from the medium against a concentration gradient up to an intracellular-to-medium ratio of 8. The transport system is different from the various systems for amino acids, among which is the transport system for basic amino acids. Diamine uptake, in contrast to amino acid uptake, is independent of Na+ and is increased at higher pH. There is some overlap among these transport classes—basic amino acids have a low affinity to the diamine system and some heteroexchange (stimulation of uptake) can be observed at very high concentrations between diamines and some amino acids (glycine, β alanine, γ-aminobutyrate, possibly also with proline and taurine). The diamine system seems also to be separate from the monoamine uptake systems. The results indicate the presence of numerous systems for metabolite transport in the brain with some overlap between systems.  相似文献   

12.
Growth of Pseudomonas aeruginosa on diamines cadaverine, putrescine, and diaminopropane requires the γ-glutamylation pathway to convert these diamines into δ-aminovalerate (AMV), γ-aminobutyrate (GABA), and β-alanine. From DNA microarrays experiments the agtABCD operon (PA0603–0606) encoding components for an ABC transporter system was found inducible by exogenous AMV, GABA, and β-alanine, but not by diamines. Induction of the agtABCD operon was abolished in the mutants of upstream agtS (PA0600) or agtR (PA0601) genes encoding the membrane-anchored sensor and the response regulator of a two-component regulatory system, respectively. Growth phenotype analysis supports the physiological functions of these agt genes on utilization of AMV and GABA. Through measurements of β-galactosidase activities from an agtA::lacZ fusion, the requirement of a functional AgtS in control of the induction effect by exogenous AMV and GABA was further substantiated. The recombinant hexa-hisidine tagged agtR was constructed and purified to demonstrate its specific interactions with the agtA promoter region by electrophoretic mobility shift assays. In summary, this study establishes the functions of agtSR and agtABCD operons in AMV and GABA uptake, and provides a potential linkage between AMV/GABA metabolism and polymicrobial infection through the recently reported function of agtR in sensing of peptidoglycan shed by gram-positive bacteria (Korgaonkar et al., Proc Natl Acad Sci USA 110:1059–1064, 2013).  相似文献   

13.
Inward rectification induced by mono- and diaminoalkane application to inside-out membrane patches was studied in Kir2.1 (IRK1) channels expressed in Xenopus oocytes. Both monoamines and diamines block Kir2.1 channels, with potency increasing as the alkyl chain length increases (from 2 to 12 methylene groups), indicating a strong hydrophobic interaction with the blocking site. For diamines, but not monoamines, increasing the alkyl chain also increases the steepness of the voltage dependence, at any concentration, from a limiting minimal value of ∼1.5 (n = 2 methylene groups) to ∼4 (n = 10 methylene groups). These observations lead us to hypothesize that monoamines and diamines block inward rectifier K+ channels by entering deeply into a long, narrow pore, displacing K+ ions to the outside of the membrane, with this displacement of K+ ions contributing to “extra” charge movement. All monoamines are proposed to lie with the “head” amine at a fixed position in the pore, determined by electrostatic interaction, so that zδ is independent of monoamine alkyl chain length. The head amine of diamines is proposed to lie progressively further into the pore as alkyl chain length increases, thus displacing more K+ ions to the outside, resulting in charge movement (zδ) increasing with the increase in alkyl chain length.  相似文献   

14.
Trypanosoma brucei and Trypanosoma cruzi are the etiologic agents of sleeping sickness and Chagas disease, respectively, two of the 17 preventable tropical infectious diseases (NTD) which have been neglected by governments and organizations working in the health sector, as well as pharmaceutical industries. High toxicity and resistance are problems of the conventional drugs employed against trypanosomiasis, hence the need for the development of new drugs with trypanocidal activity. In this work we have evaluated the trypanocidal activity of a series of N1,N2-dibenzylethane-1,2-diamine hydrochlorides (benzyl diamines) and N1-benzyl,N2-methyferrocenylethane-1,2-diamine hydrochlorides (ferrocenyl diamines) against T. brucei and T. cruzi parasite strains. We show that incorporation of the ferrocenyl group into the benzyl diamines increases the trypanocidal activity. The molecules exhibit potential trypanocidal activity in vitro against all parasite strains. Cytotoxicity assay was also carried out to evaluate the toxicity in HepG2 cells.  相似文献   

15.
The mutagenicity of a series of derivatives of 9-anilinoacridine, including the clinical antitumour agent amsacrine, has been assessed using a bacterial frameshift tester strain (Salmonella typhimurium TA1537) and a yeast petite colony assay (Saccharomyces cerevisiae 5178B). The results have been compared with microbial mammalian cell cytotoxicity, DNA binding affinity and acridine base strength (pKa). Compounds containing strong electron donor substituents on the acridine ring, and which have a high acridine pKa, show minimal frameshift mutagenicity but are strong inducers of petite yeast mutants. Conversely, some compounds which have a high DNA binding constant but a significant proportion of uncharged form at neutral pH, show high frameshift mutagenicity but minimal induction of petite mutants. It is hypothesised that this inverse relationship arises from the presence of trans-membrane drug transport mechanisms which act to exclude some compounds, particularly strongly basic compounds from the cytoplasm and to concentrate them in mitochondria.  相似文献   

16.
《Inorganica chimica acta》1986,113(2):101-108
The stability constants of the palladium(II) complexes with pyridine, 2,2′-bipyridyl, and 1,10-phenanthroline have been determined with potentiometric and spectrophotometric measurements. In the case of pyridine, the spectra of solutions of the components with different pH values are used. Otherwise, hydroxyl ion or a tetraamine are exchanged with the diamines in order to investigate equilibria from which the desired stability constants are also obtained. With pyridine, the values of K1, K2, K3, and K4 are of the expected magnitude. For the diamines, in contrast, a very strong drop from log K1 to log K2 is observed; this is due to the steric hindrance between the H atoms in α position with respect to the coordinated N atoms in the 1:2 complexes. Some complex salts of the different ligands have been prepared.  相似文献   

17.
Titration of Asp-85, the proton acceptor and part of the counterion in bacteriorhodopsin, over a wide pH range (2-11) leads us to the following conclusions: 1) Asp-85 has a complex titration curve with two values of pKa; in addition to a main transition with pKa = 2.6 it shows a second inflection point at high pH (pKa = 9.7 in 150-mM KCl). This complex titration behavior of Asp-85 is explained by interaction of Asp-85 with an ionizable residue X'. As follows from the fit of the titration curve of Asp-85, deprotonation of X' increases the proton affinity of Asp-85 by shifting its pKa from 2.6 to 7.5. Conversely, protonation of Asp-85 decreases the pKa of X' by 4.9 units, from 9.7 to 4.8. The interaction between Asp-85 and X' has important implications for the mechanism of proton transfer. In the photocycle after the formation of M intermediate (and protonation of Asp-85) the group X' should release a proton. This deprotonated state of X' would stabilize the protonated state of Asp-85.2) Thermal isomerization of the chromophore (dark adaptation) occurs on transient protonation of Asp-85 and formation of the blue membrane. The latter conclusion is based on the observation that the rate constant of dark adaptation is directly proportional to the fraction of blue membrane (in which Asp-85 is protonated) between pH 2 and 11. The rate constant of isomerization is at least 10(4) times faster in the blue membrane than in the purple membrane. The protonated state of Asp-85 probably is important for the catalysis not only of all-trans <=> 13-cis thermal isomerization during dark adaptation but also of the reisomerization of the chromophore from 13-cis to all-trans configuration during N-->O-->bR transition in the photocycle. This would explain why Asp-85 stays protonated in the N and O intermediates.  相似文献   

18.
Binding of carbamoyl phosphate to Escherichia coli ornithine transcarbamoylase and its relation to turnover have been examined as a function of pH under steady-state conditions. The pH profile of the dissociation constant of carbamoyl phosphate (Kiacp) shows that the affinity of the substrate increases as pH decreases. Two ionizing groups are involved in carbamoyl phosphate binding. Protonation of an enzymic group with pKa 9.6 results in productive binding of the substrate with a moderate affinity of Kiacp approximately 30 microM. Protonation of a second group further enhances binding by roughly another order of magnitude. This ionization occurs with a pKa that shifts from less than 6 in the free enzyme to 7.3 in the binary complex. However, tighter binding of carbamoyl phosphate due to this ionization does not contribute to catalysis. The turnover rate (kcat) of the enzyme diminishes in the acidic pH range and is governed by an ionization with a pKa of 7.2. Both the catalytic pKa of 7.2 and the productive binding pKa of 9.6 appear in the pH profile of kcat/KMcp. Together with earlier kinetic results (Kuo, L. C., Herzberg, W., and Lipscomb, W. N. (1985) Biochemistry 24, 4754-4761), these data suggest that the step which modulates kcat may occur prior to the binding of the second substrate L-ornithine.  相似文献   

19.
20.
We have characterized by NMR spectroscopy the three active site (His80, His85, and His205) and two non-active site (His107 and His114) histidines in the 34 kDa catalytic domain of Cellulomonas fimi xylanase Cex in its apo, noncovalently aza-sugar-inhibited, and trapped glycosyl-enzyme intermediate states. Due to protection from hydrogen exchange, the level of which increased upon inhibition, the labile 1Hdelta1 and 1H epsilon1 atoms of four histidines (t1/2 approximately 0.1-300 s at 30 degrees C and pH approximately 7), as well as the nitrogen-bonded protons in the xylobio-imidazole and -isofagomine inhibitors, could be observed with chemical shifts between 10.2 and 17.6 ppm. The histidine pKa values and neutral tautomeric forms were determined from their pH-dependent 13C epsilon1-1H epsilon1 chemical shifts, combined with multiple-bond 1H delta2/epsilon1-15N delta1/epsilon2 scalar coupling patterns. Remarkably, these pKa values span more than 8 log units such that at the pH optimum of approximately 6 for Cex activity, His107 and His205 are positively charged (pKa > 10.4), His85 is neutral (pKa < 2.8), and both His80 (pKa = 7.9) and His114 (pKa = 8.1) are titrating between charged and neutral states. Furthermore, upon formation of the glycosyl-enzyme intermediate, the pKa value of His80 drops from 7.9 to <2.8, becoming neutral and accepting a hydrogen bond from an exocyclic oxygen of the bound sugar moiety. Changes in the pH-dependent activity of Cex due to mutation of His80 to an alanine confirm the importance of this interaction. The diverse ionization behaviors of the histidine residues are discussed in terms of their structural and functional roles in this model glycoside hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号