首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT+/−) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT+/− EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT+/− EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT+/− early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT+/− EPCs. In AGT+/− mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.  相似文献   

3.
胚胎发生时期,内皮前体细胞(endothelial progenitor cells,EPCs)参与了原始血管形成的最初过程(血管发生)。已有的证据显示,分化为内皮细胞(endothelial cells,Ecs)的前体也存在于成人中,正常情况下,EPCs停留在成人的骨髓,但是,可以通过细胞因子或血管生成因子信号被动员到循环血,迁移到生理或病理条件下的新血管形成位点,并原位分化成内皮细胞,快速和及时地修复损伤的血管。自源的EPCs原住动员或移植是治疗性血管再生的一个潜在、有效的方法,因此,探究EPCs从骨髓的动员和调节,对血管再生以及修复器官功能具有重要的意义。  相似文献   

4.

Objective

During several pathological processes such as cancer progression, thermal injury, wound healing and hindlimb ischemia, the mobilization of endothelial progenitor cells (EPCs) mobilization was enhanced with an increase of sympathetic nerve activity and norepinephrine (NE) secretion, yet the cellular and molecular mechanisms involved in the effects of NE on EPCs has less been investigated.

Methods and Results

EPCs from BMs, peripheral circulation and spleens, the VEGF concentration in BM, skeletal muscle, peripheral circulation and spleen and angiogenesis in ischemic gastrocnemius were quantified in mice with hindlimbs ischemia. Systemic treatment of NE significantly increased EPCs number in BM, peripheral circulation and spleen, VEGF concentration in BM and skeletal muscle and angiogenesis in ischemic gastrocnemius in mice with hind limb ischemia, but did not affair VEGF concentration in peripheral circulation and spleen. EPCs isolated from healthy adults were cultured with NE in vitro to evaluate proliferation potential, migration capacity and phosphorylations of Akt and eNOS signal moleculars. Treatment of NE induced a significant increase in number of EPCs in the S-phase in a dose-dependent manner, as well as migrative activity of EPCs in vitro (p<0.05). The co-treatment of Phentolamine, I127, LY294002 and L-NAME with NE blocked the effects of NE on EPCs proliferation and migration. Treatment with NE significantly increased phosphorylation of Akt and eNOS of EPCs. Addition of phentolamine and I127 attenuated the activation of Akt/eNOS pathway, but metoprolol could not. Pretreatment of mice with either Phentolamine or I127 significantly attenuated the effects of NE on EPCs in vivo, VEGF concentration in BM, skeletal muscle and angiogenesis in ischemic gastrocnemius, but Metoprolol did not.

Conclusion

These results unravel that sympathetic nervous system regulate EPCs mobilization and their pro-angiogenic capacity via α adrenoceptor, β 2 adrenoceptor and meanwhile Akt/eNOS signaling pathway.  相似文献   

5.
6.
Neovascularization is essential for tumor growth. We have previously reported that the chemokine receptor CXCR2 is an important regulator in tumor angiogenesis. Here we report that the mobilization of bone marrow (BM)-derived endothelial progenitor cells (EPCs) is impaired in CXCR2 knockout mice harboring pancreatic cancers. The circulating levels of EPCs (positive for CD34, CD117, CD133, or CD146) are decreased in the bone marrow and/or blood of tumor-bearing CXCR2 knockout mice. CXCR2 gene knockout reduced BM-derived EPC proliferation, differentiation, and vasculogenesis in vitro. EPCs double positive for CD34 and CD133 increased tumor angiogenesis and pancreatic cancer growth in vivo. In addition, CD133(+) and CD146(+) EPCs in human pancreatic cancer are increased compared with normal pancreas tissue. These findings indicate a role of BM-derived EPC in pancreatic cancer growth and provide a cellular mechanism for CXCR2 mediated tumor neovascularization.  相似文献   

7.
Infections with hemorrhagic fever viruses are characterized by increased permeability leading to capillary leakage. Hantavirus infection is associated with endothelial dysfunction, and the clinical course is related to the degree of vascular injury. Circulating endothelial progenitor cells (cEPCs) play a pivotal role in the repair of the damaged endothelium. Therefore, we analyzed the number of cEPCs and their mobilizing growth factors in patients suffering from hantavirus disease induced by infection with Puumala virus. The numbers of EPCs of 36 hantavirus-infected patients and age- and gender-matched healthy controls were analyzed by flow cytometry. Concentrations of cEPC-mobilizing growth factors in plasma were determined by enzyme-linked immunosorbent assay. Laboratory parameters were correlated with the number of cEPCs. In patients infected with hantavirus, the number of cEPCs was significantly higher than that in healthy controls. Levels of mobilizing cytokines were upregulated in patients, and the mobilization of cEPCs is paralleled with the normalization of clinical parameters. Moreover, higher levels of cEPCs correlated with higher serum albumin levels and platelet concentrations. Our data indicate that cEPCs may play a role in the repair of hantavirus-induced endothelial damage, thereby influencing the clinical course and the severity of symptoms.  相似文献   

8.
童中艺  彭芳  王佐 《生命的化学》2006,26(2):155-157
血管内皮是循环血液和血管壁组织间的一层天然屏障,在维持血管的正常形态和功能中起重要作用。内皮受损后可引起炎症反应、单核细胞浸润和血管平滑肌细胞增生,促发动脉粥样硬化和再狭窄。因此,直接修复受损血管内皮,促使血管重新内皮化已经成为防止动脉粥样硬化及再狭窄领域的重要课题。大量研究表明,内皮祖细胞(EPC)参与受损血管的重新内皮化。该文就内皮祖细胞的来源、鉴定、参与重新内皮化进行综述。  相似文献   

9.
10.
We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.  相似文献   

11.
Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of “strings of pearl”- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568–treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular pathway and accumulated prominently in all parts of the Golgi apparatus and in lipid droplets. Subsequently, also the RER and mitochondria were involved. These studies demonstrated the different intracellular pathway of HDL-derived bodipy-cholesterol and HDL-derived bodipy-cholesteryl oleate by EPCs, with concomitant.  相似文献   

12.
糖尿病微血管病变严重影响了患者生活质量,是患者致死致残主要原因。微血管病变主要表现在视网膜、肾、神经、心肌组织。微血管病变的机制尚未完全清楚,近年越来越多研究发现血管内皮祖细胞(endothelial progenitor cells,EPCs)是该病发病重要原因。EPCs有分化为成熟的内皮细胞并且参与新血管形成和新生的能力。正常情况下内皮损失和EPCs对内皮的修复作用处于动态平衡状态,一旦EPCs受损,内皮损害和修复之间的平衡被打破,内皮层的完整性遭到破坏,必然参与糖尿病血管病变的发生发展。国内外大量研究证明糖尿病合并大血管病变EPCs数目功能改变,而糖尿病合并微血管病变EPCs的怎样变化?本文就EPCs与糖尿病微血管病变的关系进行系统综述。  相似文献   

13.

Background

Although the clinical outcome of acute myocardial infarction (AMI) in patients with type 2 diabetes mellitus (T2DM) is well established to be worse than for non-diabetic patients, the reasons for this remain unclear. We hypothesized that this may be related to impairment of bone marrow-derived endothelial progenitor cells (EPCs) mobilization.

Methodology/Principal Findings

We observed short term bone marrow EPCs mobilization and long term clinical outcomes in 62 AMI patients with or without T2DM and investigated EPCs levels as well as bone marrow pathway changes in a rat model of diabetes after AMI. Patients with T2DM exhibited a delay (peak time diabetics vs. non-diabetics: day 7 vs. day 5) and a decrease in EPCs mobilization (diabetics vs. non-diabetics: 285±56/106 mononuclear cells (MNCs) vs. 431±88/106 MNCs, p<0.05) within one month after AMI. Plasma levels of VEGF and SDF-1α as well as of hsCRP were higher in T2DM patients. Over a mean of 2.26 years follow-up, T2DM patients exhibited a pronounced decrease in LVEF as well as an increase in clinical events. Glucose (HR 2.01, 95% CI 1.42–2.85, p = 0.008), first day EPC (HR 0.974, 95% CI 0.952–0.997, p = 0.02) and seven day EPCs (HR 0.966, 95% CI 0.945–0.988, p = 0.003) were independent prognostic variables for cardiovascular mortality. In a diabetic rat model of AMI, decreased circulating EPCs was accompanied by lower expression of phospho-Akt, phospho-eNOS, HIF, MMP-9 and MMP-9 activity in the bone marrow as well as impaired cardiac function, angiogenesis and increased left ventricle remodeling.

Conclusions/Significance

Bone marrow EPCs mobilization is delayed and reduced in diabetes, with impaired HIF/p-Akt/p-eNOS/MMP-9 signaling. This is likely to contribute to the deterioration in cardiac function and worsened clinical outcome seen in patients with T2DM.  相似文献   

14.
内皮祖细胞(Endothelial Progenitor Cells,EPCs)是内皮细胞(endothelial cells,ECs)的前体细胞,即能分化为成熟ECs的祖细胞,它在血管内皮再生中发挥着重要作用。随着EPCs研究的深入,其在临床诊断、预后判断和各种缺血性疾病的治疗方面将会有广阔的应用前景。然而,关于EPCs的定义、来源、表面标记以及培养鉴定方法目前仍存在争议。  相似文献   

15.

Background

Bone marrow-derived endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Although the actin cytoskeleton has been considered as a modulator that controls the function and modulation of stem cells, its role in the function of EPCs, and in particular late EPCs, remains poorly understood.

Methodology/Principal Finding

Bone marrow-derived late EPCs were treated with jasplakinolide, a compound that stabilizes actin filaments. Cell apoptosis, proliferation, adhesion, migration, tube formation, nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation were subsequently assayed in vitro. Moreover, EPCs were locally infused into freshly balloon-injured carotid arteries, and the reendothelialization capacity was evaluated after 14 days. Jasplakinolide affected the actin distribution of late EPCs in a concentration and time dependent manner, and a moderate concentration of (100 nmol/l) jasplakinolide directly stabilized the actin filament of late EPCs. Actin stabilization by jasplakinolide enhanced the late EPC apoptosis induced by VEGF deprivation, and significantly impaired late EPC proliferation, adhesion, migration and tube formation. Furthermore, jasplakinolide attenuated the reendothelialization capacity of transplanted EPCs in the injured arterial segment in vivo. However, eNOS phosphorylation and NO production were increased in late EPCs treated with jasplakinolide. NO donor sodium nitroprusside (SNP) rescued the functional activities of jasplakinolide-stressed late EPCs while the endothelial NO synthase inhibitor L-NAME led to a further dysfunction induced by jasplakinolide in late EPCs.

Conclusions/Significance

A moderate concentration of jasplakinolide results in an accumulation of actin filaments, enhancing the apoptosis induced by cytokine deprivation, and impairing the proliferation and function of late EPCs both in vitro and in vivo. NO donor reverses these impairments, suggesting the role of NO-related mechanisms in jasplakinolide-induced EPC downregulation. Actin cytoskeleton may thus play a pivotal role in regulating late EPC function.  相似文献   

16.
内皮祖细胞的分离培养与鉴定   总被引:2,自引:0,他引:2  
内皮祖细胞的分离方法有免疫磁珠分离法、淋巴细胞分离液分离法(1.077)和差速贴壁法,这3种方法已被人们广泛使用,均可分离到一定的目的细胞。分离到的目的细胞在培养过程中逐渐分化、成熟、发育为内皮细胞。在内皮细胞和内皮祖细胞的鉴别区分,使用CD34+/CD133+/KDR+鉴定为内皮祖细胞,同时使用内皮祖细胞吞噬D il-ac-LDLFITC-UEA双阳性的方法也可鉴定为内皮祖细胞。  相似文献   

17.
内皮祖细胞(Endothelial Progenitor Cells,EPCs)是血管内皮细胞的前体细胞,即能分化为成熟血管内皮细胞的祖细胞。随着对EPCs功能和影响其分化、生存、归巢和组织分布因素的了解,EPCs作为临床诊断、预后判断和治疗方法将有广阔的前景。本文就EPCs的的来源,EPCs的分离、培养、鉴定,EPCs的表面标志,EPCs的动员、分化和归巢等生物学特性及其进展展开综述。  相似文献   

18.
Adiponectin is an adipokine whose plasma levels are inversely correlated to metabolic syndrome components. Adiponectin protects against atherosclerosis and decreases risks in myocardial infarction. Endothelial progenitor cells (EPCs) are a heterogeneous population of circulating cells involved in vascular repair and neovascularization. EPCs number is reduced in patients with cardiovascular disease. We hypothesize that the positive effects of adiponectin against atherosclerosis are explained in part by its interactions with EPCs. Cells were obtained from healthy volunteers' blood by mononuclear cell isolation and plating on collagen‐coated dishes. Three sub‐populations of EPCs were identified and characterized using flow cytometry. EPCs' expression of adiponectin receptors, AdipoR1, and AdipoR2 was evaluated by quantitative PCR. The effects of recombinant adiponectin on EPCs' susceptibility to apoptosis were assessed. Finally, expression of neutrophil elastase by EPCs and activity of this enzyme on adiponectin processing were assessed. Quantitative PCR analysis of EPCs mRNAs showed that AdipoR1 mRNA is expressed at higher levels than AdipoR2. Expression of AdipoR1 protein was confirmed by western blot. Adiponectin significantly increased survival of two sub‐populations of EPCs in conditions of serum deprivation. Such effect could not be demonstrated in the third EPCs sub‐population. We also demonstrated that EPCs, particularly one sub‐population, express neutrophil elastase. Neutrophil elastase activity was confirmed in EPCs' conditioned media. Adiponectin protects some EPCs sub‐populations against apoptosis and therefore could modulate EPCs ability to induce repair of vascular damage. Neutrophil elastase activity of EPCs could locally modulate adiponectin activity by its involvement in the generation of the globular form of adiponectin.  相似文献   

19.
20.
血管的发生和发育不仅对胚胎形成中各器官的发育分化十分重要,并且对成体的创伤修复和生殖功能也具有重要意义.血管内皮细胞是形成心血管封闭管道系统的形态基础,体外多种细胞可经诱导分化产生出内皮祖/内皮细胞(endothelial progenitor/endothelial cells,EPCs/ECs),但是存在一些不足.鉴于人类胚胎干细胞(human embryonic stem cells,hESCs)诱导分化的全能性和长期增殖能力,为EPCs/ECs提供了新的来源.现有文献报道,hESCs诱导分化为EPCs/ECs的比例较低,为了提高该诱导分化效率,我们使用分阶段的二维诱导方法,首先将细胞接种在超纯层纤连蛋白(Matrigel)上,之后通过在不同阶段添加不同的因子,最终获得CD31+KDR+细胞的比例可以达到16%.进一步内皮诱导分化的结果显示,获得的EPCs/ECs的比例可以达到约32%,这些细胞具有在Matrigel上形成血管样结构的能力,可结合植物凝集素.实时定量PCR的结果显示,诱导分化所得的细胞表达众多内皮相关基因,并且免疫荧光的结果也表明部分细胞表达内皮细胞特异性表面标志CD31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号