首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5′-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication.  相似文献   

2.
3.
In recent years, hand-foot-and-mouth disease (HFMD), which is caused by Enteroviruses, has emerged as a serious illness. It affects mainly children under the age of five and results in high fatality rates. Enterovirus 71 (EV71) is the main causative agent of HFMD in China and currently there are no effective anti-viral drugs available to treat HFMD. In the present study, we screened compounds for inhibition of proliferation of EV71. Compound YZ-LY-0 stalled the life cycle of EV71. The inhibitor exhibited EC50 value of 0.29 μm against SK-EV006 strain of EV71. Notably, YZ-LY-0 had low cytotoxicity (CC50 > 100 μM) and a high selectivity index (over 300) in Vero and RD cells. YZ-LY-0 in combination with an EV71 RdRp inhibitor or an entry inhibitor showed an antagonistic effect at very low concentrations. However, at higher concentrations the inhibitors exhibited a synergistic effect in inhibiting viral replication. Preliminary results on investigation of the mechanism of inhibition indicate that YZ-LY-0 does not block the entry of the virus in the host cell, but instead inhibits an early stage of EV71 replication. Our studies provide a potential clinical therapeutic option against EV71 infections and suggest that a combined application of YZ-LY-0 with other inhibitors could be more effective in the treatment of HFMD.  相似文献   

4.
An internal ribosomal entry site (IRES) that directs the initiation of viral protein translation is a potential drug target for enterovirus 71 (EV71). Regulation of internal initiation requires the interaction of IRES trans-acting factors (ITAFs) with the internal ribosomal entry site. Biotinylated RNA-affinity chromatography and proteomic approaches were employed to identify far upstream element (FUSE) binding protein 2 (FBP2) as an ITAF for EV71. The interactions of FBP2 with EV71 IRES were confirmed by competition assay and by mapping the association sites in both viral IRES and FBP2 protein. During EV71 infection, FBP2 was enriched in cytoplasm where viral replication occurs, whereas FBP2 was localized in the nucleus in mock-infected cells. The synthesis of viral proteins increased in FBP2-knockdown cells that were infected by EV71. IRES activity in FBP2-knockdown cells exceeded that in the negative control (NC) siRNA-treated cells. On the other hand, IRES activity decreased when FBP2 was over-expressed in the cells. Results of this study suggest that FBP2 is a novel ITAF that interacts with EV71 IRES and negatively regulates viral translation.  相似文献   

5.
Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease (HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan, Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor binding is the first step in the development of viral infections, and viral factors (e.g., 5′ UTR, VP1, 3C, 3D, 3′ UTR), host factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis of viruses are determined by a combination of several factors. This review article provides a summary of host and virus factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.  相似文献   

6.
Chemical modifications are important for RNA function and metabolism. N4-acetylcytidine (ac4C) is critical for the translation and stability of mRNA. Although ac4C is found in RNA viruses, the detailed mechanisms through which ac4C affects viral replication are unclear. Here, we reported that the 5′ untranslated region of the enterovirus 71 (EV71) genome was ac4C modified by the host acetyltransferase NAT10. Inhibition of NAT10 and mutation of the ac4C sites within the internal ribosomal entry site (IRES) suppressed EV71 replication. ac4C enhanced viral RNA translation via selective recruitment of PCBP2 to the IRES and boosted RNA stability. Additionally, ac4C increased the binding of RNA-dependent RNA polymerase (3D) to viral RNA. Notably, ac4C-deficient mutant EV71 showed reduced pathogenicity in vivo. Our findings highlighted the essential role of ac4C in EV71 infection and provided insights into potential antiviral treatments.  相似文献   

7.
Shih SR  Stollar V  Li ML 《Journal of virology》2011,85(19):9658-9666
Enterovirus 71 (EV71) infections continue to remain an important public health problem around the world, especially in the Asia-Pacific region. There is a significant mortality rate following such infections, and there is neither any proven therapy nor a vaccine for EV71. This has spurred much fundamental research into the replication of the virus. In this review, we discuss recent work identifying host cell factors which regulate the synthesis of EV71 RNA and proteins. Three of these proteins, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), far-upstream element-binding protein 2 (FBP2), and FBP1 are nuclear proteins which in EV71-infected cells are relocalized to the cytoplasm, and they influence EV71 internal ribosome entry site (IRES) activity. hnRNP A1 stimulates IRES activity but can be replaced by hnRNP A2. FBP2 is a negative regulatory factor with respect to EV71 IRES activity, whereas FBP1 has the opposite effect. Two other proteins, hnRNP K and reticulon 3, are required for the efficient synthesis of viral RNA. The cleavage stimulation factor 64K subunit (CstF-64) is a host protein that is involved in the 3' polyadenylation of cellular pre-mRNAs, and recent work suggests that in EV71-infected cells, it may be cleaved by the EV71 3C protease. Such a cleavage would impair the processing of pre-mRNA to mature mRNAs. Host cell proteins play an important role in the replication of EV71, but much work remains to be done in order to understand how they act.  相似文献   

8.
Lin YW  Lin HY  Tsou YL  Chitra E  Hsiao KN  Shao HY  Liu CC  Sia C  Chong P  Chow YH 《PloS one》2012,7(1):e30507
Enterovirus (EV) 71 infection is known to cause hand-foot-and-mouth disease (HFMD) and in severe cases, induces neurological disorders culminating in fatality. An outbreak of EV71 in South East Asia in 1997 affected over 120,000 people and caused neurological disorders in a few individuals. The control of EV71 infection through public health interventions remains minimal and treatments are only symptomatic. Recently, human scavenger receptor class B, member 2 (SCARB2) has been reported to be a cellular receptor of EV71. We expressed human SCARB2 gene in NIH3T3 cells (3T3-SCARB2) to study the mechanisms of EV71 entry and infection. We demonstrated that human SCARB2 serves as a cellular receptor for EV71 entry. Disruption of expression of SCARB2 using siRNAs can interfere EV71 infection and subsequent inhibit the expression of viral capsid proteins in RD and 3T3-SCARB2 but not Vero cells. SiRNAs specific to clathrin or dynamin or chemical inhibitor of clathrin-mediated endocytosis were all capable of interfering with the entry of EV71 into 3T3-SCARB2 cells. On the other hand, caveolin specific siRNA or inhibitors of caveolae-mediated endocytosis had no effect, confirming that only clathrin-mediated pathway was involved in EV71 infection. Endocytosis of EV71 was also found to be pH-dependent requiring endosomal acidification and also required intact membrane cholesterol. In summary, the mechanism of EV71 entry through SCARB2 as the receptor for attachment, and its cellular entry is through a clathrin-mediated and pH-dependent endocytic pathway. This study on the receptor and endocytic mechanisms of EV71 infection is useful for the development of effective medications and prophylactic treatment against the enterovirus.  相似文献   

9.
Pyroptosis is an inflammatory form of programmed cell death that is executed by the gasdermin (GSDM)-N domain of GSDM family proteins, which form pores in the plasma membrane. Although pyroptosis acts as a host defense against invasive pathogen infection, its role in the pathogenesis of enterovirus 71 (EV71) infection is unclear. In the current study, we found that EV71 infection induces cleavage of GSDM E (GSDME) by using western blotting analysis, an essential step in the switch from caspase-3-mediated apoptosis to pyroptosis. We show that this cleavage is independent of the 3C and 2A proteases of EV71. However, caspase-3 activation is essential for this cleavage, as GSDME could not be cleaved in caspase-3-KO cells upon EV71 infection. Further analyses showed that EV71 infection induced pyroptosis in WT cells but not in caspase-3/GSDME double-KO cells. Importantly, GSDME is required to induce severe disease during EV71 infection, as GSDME deficiency in mice was shown to alleviate pathological symptoms. In conclusion, our results reveal that GSDME is important for the pathogenesis of EV71 via mediating initiation of pyroptosis.  相似文献   

10.
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP197 Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient.  相似文献   

11.
Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease, a common febrile disease in children; however, EV71 has been also associated with various neurological diseases including fatal cases in large EV71 outbreaks particularly in the Asia Pacific region. Recently we identified human P-selectin glycoprotein ligand-1 (PSGL-1) as a cellular receptor for entry and replication of EV71 in leukocytes. PSGL-1 is a sialomucin expressed on the surface of leukocytes, serves as a high affinity counterreceptor for selectins, and mediates leukocyte rolling on the endothelium. The PSGL-1-P-selectin interaction requires sulfation of at least one of three clustered tyrosines and an adjacent O-glycan expressing sialyl Lewis x in an N-terminal region of PSGL-1. To elucidate the molecular basis of the PSGL-1-EV71 interaction, we generated a series of PSGL-1 mutants and identified the post-translational modifications that are critical for binding of PSGL-1 to EV71. We expressed the PSGL-1 mutants in 293T cells and the transfected cells were assayed for their abilities to bind to EV71 by flow cytometry. We found that O-glycosylation on T57, which is critical for PSGL-1-selectin interaction, is not necessary for PSGL-1 binding to EV71. On the other hand, site-directed mutagenesis at one or more potential tyrosine sulfation sites in the N-terminal region of PSGL-1 significantly impaired PSGL-1 binding to EV71. Furthermore, an inhibitor of sulfation, sodium chlorate, blocked the PSGL-1-EV71 interaction and inhibited PSGL-1-mediated viral replication of EV71 in Jurkat T cells in a dose-dependent manner. Thus, the results presented in this study reveal that tyrosine sulfation, but not O-glycosylation, in the N-terminal region of PSGL-1 may facilitate virus entry and replication of EV71 in leukocytes.  相似文献   

12.
Enterovirus 71 (EV71) is a neurotropic pathogen that can cause severe neural diseases and complications on infected patients. Clinical observations showed that EV71-induced immune responses may be associated with virus induced neurogenic pulmonary edema. Here reviewed studies that discovered several host molecules as potential factors for EV71 virulence.  相似文献   

13.
14.
15.
Enterovirus type 71(EV71) causes severe hand-foot-and-mouth disease (HFMD) resulting in hundreds of deaths of children every year; However, currently, there is no effective treatment for EV71. In this study, the EV71 poly-protein (EV71-P1 protein) gene was processed and cloned into the eukaryotic expression vector pPIC9k and then expressed in Pichia pastoris strain GS115. The EV71 P1 protein with a molecular weight of 100 kD was produced and secreted into the medium. The soluble EV71 P1 protein was purified by column chromatography with a recovery efficiency of 70%. The result of the immunological analysis showed that the EV71 P1 protein had excellent immunogenicity and could stimulate the production of EV71-VP1 IgG antibody in injected rabbits. We suggest that EV71-P1 protein is an ideal candidate for an EV71 vaccine to prevent EV71 infection.  相似文献   

16.
Enterovirus 71 (EV71) and coxsackievirus (CVA) are the most common causative factors for hand, foot, and mouth disease (HFMD) and neurological disorders in children. Lack of a reliable animal model is an issue in investigating EV71-induced disease manifestation in humans, and the current clinical therapies are symptomatic. We generated a novel EV71-infectious model with hSCARB2-transgenic mice expressing the discovered receptor human SCARB2 (hSCARB2). The challenge of hSCARB2-transgenic mice with clinical isolates of EV71 and CVA16 resulted in HFMD-like and neurological syndromes caused by E59 (B4) and N2838 (B5) strains, and lethal paralysis caused by 5746 (C2), N3340 (C4), and CVA16. EV71 viral loads were evident in the tissues and CNS accompanied the upregulated pro-inflammatory mediators (CXCL10, CCL3, TNF-α, and IL-6), correlating to recruitment of the infiltrated T lymphocytes that result in severe diseases. Transgenic mice pre-immunized with live E59 or the FI-E59 vaccine was able to resist the subsequent lethal challenge with EV71. These results indicate that hSCARB2-transgenic mice are a useful model for assessing anti-EV71 medications and for studying the pathogenesis induced by EV71.  相似文献   

17.
18.
Enterovirus 71 (EV71) is the predominant pathogen for severe hand, foot, and mouth disease (HFMD) in children younger than 5 years, and currently no effective drugs are available for EV71. Thus, there is an urgent need to develop new drugs for the control of EV71 infection. In this study, LJ04 was extracted from Laminaria japonica using diethylaminoethyl cellulose-52 with 0.4 mol/l NaCl as the eluent, and its virucidal activity was evaluated based on its cytopathic effects on a microplate. LJ04 is composed of fucose, galactose, and mannose and mainly showed good virucidal activity against EV71. The antiviral mechanisms of LJ04 were the direct inactivation of the virus, the blockage of virus binding, disruptions to viral entry, and weak inhibitory activity against the nonstructural protein 3C. The two most important findings from this study were that LJ04 inhibited EV71 proliferation in HM1900 cells, which are a human microglia cell line, and that LJ04 can directly inactivate EV71 within 2 hr at 37°C. This study demonstrates for the first time the ability of a polysaccharide from L. japonica to inhibit viral and 3C activity; importantly, the inhibition of 3C might have a minor effect on the antiviral effect of LJ04. Consequently, our results identify LJ04 as a potential drug candidate for the control of severe EV71 infection in clinical settings.  相似文献   

19.
Hand, Foot and Mouth Disease (HFMD) is a self-limiting viral disease that mainly affects infants and children. In contrast with other HFMD causing enteroviruses, Enterovirus71 (EV71) has commonly been associated with severe clinical manifestation leading to death. Currently, due to a lack in understanding of EV71 pathogenesis, there is no antiviral therapeutics for the treatment of HFMD patients. Therefore the need to better understand the mechanism of EV71 pathogenesis is warranted. We have previously reported a human colorectal adenocarcinoma cell line (HT29) based model to study the pathogenesis of EV71. Using this system, we showed that knockdown of DGCR8, an essential cofactor for microRNAs biogenesis resulted in a reduction of EV71 replication. We also demonstrated that there are miRNAs changes during EV71 pathogenesis and EV71 utilise host miRNAs to attenuate antiviral pathways during infection. Together, data from this study provide critical information on the role of miRNAs during EV71 infection.  相似文献   

20.
Enterovirus 71 (EV71) causes hand, foot, and mouth disease and severe neurological disorders in children. Human scavenger receptor class B member 2 (hSCARB2) and P-selectin glycoprotein ligand-1 (PSGL-1) are identified as receptors for EV71. The underling mechanism of PSGL-1-mediated EV71 entry remains unclear. The endocytosis required for EV71 entry were investigated in Jurkat T and mouse L929 cells constitutively expressing human PSGL-1 (PSGL-1-L929) or human rhabdomyosarcoma (RD) cells displaying high SCARB2 but no PSGL-1 by treatment of specific inhibitors or siRNA. We found that disruption of clathrin-dependent endocytosis prevented EV71 infection in RD cells, while there was no influence in Jurkat T and PSGL-1-L929 cells. Disturbing caveolar endocytosis by specific inhibitor or caveolin-1 siRNA in Jurkat T and PSGL-1-L929 cells significantly blocked EV71 infection, whereas it had no effect on EV71 infection in RD cells. Confocal immunofluorescence demonstrated caveola, and EV71 was directly colocalized. pH-dependent endosomal acidification and intact membrane cholesterol were important for EV71 infection, as judged by the pretreatment of inhibitors that abrogated the infection. A receptor-dominated endocytosis of EV71 infection was observed: PSGL-1 initiates caveola-dependent endocytosis and hSCARB2 activates clathrin-dependent endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号