首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探究罗氏沼虾(Macrobrachium rosenbergii)育苗期浮游细菌群落的时间动态和组装机制,对3个苗种厂的全育苗周期进行持续追踪,利用16S rRNA扩增子测序评估了罗氏沼虾幼苗发育过程中浮游细菌群落的动态演替、环境驱动因素、微生物标志物和共现网络。细菌群落的α-多样性在育苗期呈U型分布规律,群落相似性遵循时间衰减模式,群落周转率为0.011。随着虾苗的发育,微杆菌科(Microbacteriaceae)(放线菌门:Actinobacteria)和冷形菌科(Cryomorphaceae)(拟杆菌门:Bacteroidetes)的相对丰度显著增加(P<0.05),而拟杆菌门中的黄杆菌科(Flavobacteriaceae)和藏红花黄色线菌科(Crocinitomicaceae)的比重下降。pH是影响浮游细菌群落多样性和组成的最主要的环境驱动因素。利用随机森林分析,鉴定了12个幼苗发育相关的微生物标志物,其中伯克氏菌科(Burkholderiaceae)和圆杆菌科(Cyclobacteriaceae)分别是育苗早期(1—2d)和中期(8—10d)的指示性类群,而腐螺...  相似文献   

2.
Although spatial and temporal patterns of phylogenetic community structure during succession are inherently interlinked and assembly processes vary with environmental and phylogenetic scales, successional studies of community assembly have yet to integrate spatial and temporal components of community structure, while accounting for scaling issues. To gain insight into the processes that generate biodiversity after disturbance, we combine analyses of spatial and temporal phylogenetic turnover across phylogenetic scales, accounting for covariation with environmental differences. We compared phylogenetic turnover, at the species‐ and individual‐level, within and between five successional stages, representing woody plant communities in a subtropical forest chronosequence. We decomposed turnover at different phylogenetic depths and assessed its covariation with between‐plot abiotic differences. Phylogenetic turnover between stages was low relative to species turnover and was not explained by abiotic differences. However, within the late‐successional stages, there was high presence‐/absence‐based turnover (clustering) that occurred deep in the phylogeny and covaried with environmental differentiation. Our results support a deterministic model of community assembly where (i) phylogenetic composition is constrained through successional time, but (ii) toward late succession, species sorting into preferred habitats according to niche traits that are conserved deep in phylogeny, becomes increasingly important.  相似文献   

3.
Soil bacterial succession under intensive anthropogenic disturbances is not well known. Using terminal restriction fragment length polymorphisms and 454 pyrosequencing of 16S rRNA genes, this study investigated how soil bacterial diversity and community structure changed under two agricultural land uses (paddy rice and upland cropping) in relation to soil development along a 500-year chronosequence created by intermittent reclamation of estuarine salt marshes. Multivariate analysis revealed orderly changes in soil physicochemical properties and bacterial community structure with time, confirming the occurrence of soil development and bacterial succession. Patterns of soil development and bacterial succession resembled each other, with recent land uses affecting their trajectories but not the overall direction. Succession of bacterial community structure was mainly associated with changes in ??-Proteobacteria and Verrucomicrobia. Two stages of bacterial succession were observed, a dramatic-succession stage during the first several decades when bacterial diversity increased evidently and bacterial community structure changed rapidly, and a long gradual-succession stage that lasted for centuries. Canonical correspondence analysis identified soil Na+, potentially mineralizable nitrogen, total phosphorous, and crystallinity of iron oxyhydrates as potential environmental drivers of bacterial succession. To conclude, orderly succession of soil bacterial communities occurred along with the long-term development of agroecosystems, which in turn was associated with soil physicochemical changes over time.  相似文献   

4.
5.
The bacterial community assembly patterns and processes are poorly understood in pig manure slurry. We collected pig manure slurry samples during the winter and summer seasons from eight commercial pig farms in South Korea. The V3 region of 16S rRNA genes was PCR amplified and sequenced using paired-end Illumina technology for in-depth characterization of bacterial community. Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Tenericutes were the predominant bacterial phyla present in slurry samples. Bacterial taxonomic community composition was not influenced by the season; however, phylogenetic community composition was affected by seasonal variations. The community composition and diversity patterns were strongly influenced by pH. The bacterial diversity indices showed a unimodal relationship with pH. Phylogenetic signals were detected over only short phylogenetic distances, revealing that closely related bacterial operational taxonomic units (OTUs) tend to co-occur in the same environment; hence, they are ecologically similar. Across all samples, a niche-based process, through strong environmental filtering imposed by pH, primarily governed bacterial community assembly; however, in samples close to the neutral pH range, the role of environmental filtering was decreased due to neutral community assembly. In summary, pH emerged as the major physico-chemical variable in pig manure slurry that regulates the relative importance of niche-based and neutral processes in shaping the community assembly of bacteria.  相似文献   

6.
The succession in bacterial community composition was studied over two years in the epilimnion and hypolimnion of two freshwater systems: a natural lake (Pavin Lake) and a lake-reservoir (Sep Reservoir). The bacterial community composition was determined by cloning-sequencing of 16S rRNA and by terminal restriction fragment length polymorphism. Despite large hydrogeological differences, in the Sep Reservoir and Pavin Lake the dominant bacteria were from the same taxonomic divisions, particularly Actinobacteria and Betaproteobacteria. In both ecosystems, these major bacterial divisions showed temporal fluctuations that were much less marked than those occurring at a finer phylogenetic scale. Nutrient availability and mortality factors, the nature of which differed from one lake to another, covaried with the temporal variations in the bacterial community composition at all sampling depths, whereas factors related to seasonal forces (temperature and outflow for Sep Reservoir) seemed to account only for the variation of the hypolimnion bacterial community composition. No seasonal reproducibility in temporal evolution of bacterial community from one year to the next was observed.  相似文献   

7.
云南喀斯特区域是滇桂黔岩溶石漠化重点治理区之一,探讨气候暖湿化下植物群落演替阶段的构建特征是生态恢复和森林管理可持续的关键。以气候暖湿化为背景,将喀斯特天坑作为天然“开顶式气室”,天坑南坡地下森林为群落演替顶极。联合系统发育和功能性状探讨演替序列(坑外针阔混交林,坑外常绿阔叶林,坑内常绿阔叶林)的群落构建机制。结果发现:(1)演替前期植物性状的系统发育信号较弱,叶长宽比、叶面积、叶厚度和比叶面积的系统发育信号显著,但功能性状的保守性较弱;演替后期植物性状转为趋同进化,系统发育信号均不显著。(2)演替阶段植物群落的系统发育多样性逐渐降低,并与物种丰富度显著正相关。(3)系统发育指数NRI(净亲缘指数)和NTI(最近种间亲缘指数)由小于0转为大于0,功能性状结构指数TraitSESMPD(标准化平均配对性状距离指数)和TraitSESMNTD(标准化平均最近相邻性状距离指数)均大于0。演替阶段的群落构建过程由生境过滤和物种间相互作用所主导。(4)系统发育和功能性状结构指数主要与土壤含水量、全磷和速效钾含量显著负相关。演替阶段下土壤水分和养分受限时群落趋于聚集,群落构建过程支持生态位假说。研...  相似文献   

8.
9.
Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms.  相似文献   

10.
During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.  相似文献   

11.
Bacteria have important roles in freshwater food webs and in the cycling of elements in the ecosystem. Yet specific ecological features of individual phylogenetic groups and interactions among these are largely unknown. We used 454 pyrosequencing of 16S rRNA genes to study associations of different bacterioplankton groups to environmental characteristics and their co-occurrence patterns over an annual cycle in a dimictic lake. Clear seasonal succession of the bacterioplankton community was observed. After binning of sequences into previously described and highly resolved phylogenetic groups (tribes), their temporal dynamics revealed extensive synchrony and associations with seasonal events such as ice coverage, ice-off, mixing and phytoplankton blooms. Coupling between closely and distantly related tribes was resolved by time-dependent rank correlations, suggesting ecological coherence that was often dependent on taxonomic relatedness. Association networks with the abundant freshwater Actinobacteria and Proteobacteria in focus revealed complex interdependencies within bacterioplankton communities and contrasting linkages to environmental conditions. Accordingly, unique ecological features can be inferred for each tribe and reveal the natural history of abundant cultured and uncultured freshwater bacteria.  相似文献   

12.
Soil microbial communities are abundant, hyper‐diverse and mediate global biogeochemical cycles, but we do not yet understand the processes mediating their assembly. Current hypothetical frameworks suggest temporal (e.g. dispersal limitation) and environmental (e.g. soil pH) filters shape microbial community composition; however, there is limited empirical evidence supporting this framework in the hyper‐diverse soil environment, particularly at large spatial (i.e. regional to continental) and temporal (i.e. 100 to 1000 years) scales. Here, we present evidence from a long‐term chronosequence (4000 years) that temporal and environmental filters do indeed shape soil bacterial community composition. Furthermore, nearly 20 years of environmental monitoring allowed us to control for potentially confounding environmental variation. Soil bacterial communities were phylogenetically distinct across the chronosequence. We determined that temporal and environmental factors accounted for significant portions of bacterial phylogenetic structure using distance‐based linear models. Environmental factors together accounted for the majority of phylogenetic structure, namely, soil temperature (19%), pH (17%) and litter carbon:nitrogen (C:N; 17%). However, of all individual factors, time since deglaciation accounted for the greatest proportion of bacterial phylogenetic structure (20%). Taken together, our results provide empirical evidence that temporal and environmental filters act together to structure soil bacterial communities across large spatial and long‐term temporal scales.  相似文献   

13.
Although pyrogenic organic matter (PyOM) generated during wildfires plays a critical role in post-fire ecosystem recovery, the specific mechanisms by which PyOM controls soil microbial community assembly after wildfire perturbation remain largely uncharacterized. Herein we characterized the effect of PyOM on soil bacterial communities at two independent wildfire-perturbed forest sites. We observed that α-diversity of bacterial communities was the highest in wildfire-perturbed soils and that bacterial communities gradually changed along a sequence of unburnt soil → burnt soil → PyOM. The microbial communities reconstructed from unburnt soil and PyOM resembled the real bacterial communities in wildfire-perturbed soils in their α-diversity and community structure. Bacterial specialists in PyOM and soils clustered in phylogenetic coherent lineages with intra-lineage pH-niche conservatism and inter-lineage pH-niche divergence. Our results suggest that PyOM mediates bacterial community assembly in wildfire-perturbed soils by a combination of environmental selection and dispersal of phylogenetic coherent specialists with habitat preference in the heterogeneous microhabitats of burnt soils with distinct PyOM patches.Subject terms: Forest ecology, Microbial ecology  相似文献   

14.
Understanding the processes that underpin the community assembly of bacteria is a key challenge in microbial ecology. We studied soil bacterial communities across a large-scale successional gradient of managed and abandoned grasslands paired with mature forest sites to disentangle drivers of community turnover and assembly. Diversity partitioning and phylogenetic null-modelling showed that bacterial communities in grasslands remain compositionally stable following abandonment and secondary succession but they differ markedly from fully afforested sites. Zeta diversity analyses revealed the persistence of core microbial taxa that both reflected and differed from whole-scale community turnover patterns. Differences in soil pH and C:N were the main drivers of community turnover between paired grassland and forest sites and the variability of pH within successional stages was a key factor related to the relative dominance of deterministic assembly processes. Our results indicate that grassland microbiomes could be compositionally resilient to abandonment and secondary succession and that the major changes in microbial communities between grasslands and forests occur fairly late in the succession when trees have established as the dominant vegetation. We also show that core taxa may show contrasting responses to management and abandonment in grasslands.  相似文献   

15.
Soil salinity acts as a critical environmental filter on microbial communities, but the consequences for microbial diversity and biogeochemical processes are poorly understood. Here, we characterized soil bacterial communities and microbial functional genes in a coastal estuarine wetland ecosystem across a gradient (~5 km) ranging from oligohaline to hypersaline habitats by applying the PCR-amplified 16S rRNA (rRNA) genes sequencing and microarray-based GeoChip 5.0 respectively. Results showed that saline soils in marine intertidal and supratidal zone exhibited higher bacterial richness and Faith's phylogenetic diversity than that in the freshwater-affected habitats. The relative abundance of taxa assigned to Gammaproteobacteria, Bacteroidetes and Firmicutes was higher with increasing salinity, while those affiliated with Acidobacteria, Chloroflexi and Cyanobacteria were more prevalent in wetland soils with low salinity. The phylogenetic inferences demonstrated the deterministic role of salinity filtering on the bacterial community assembly processes. The abundance of most functional genes involved in carbon degradation and nitrogen cycling correlated negatively with salinity, except for the hzo gene, suggesting a critical role of the anammox process in tidal affected zones. Overall, the salinity filtering effect shapes the soil bacterial community composition, and soil salinity act as a critical inhibitor in the soil biogeochemical processes in estuary ecosystems.  相似文献   

16.
The mechanisms governing community assembly is fundamental to ecological restoration and clarification of the assembly processes associated with severe disturbances (characterized by no biological legacy and serious environmental problems) is essential. However, a systematic understanding of community assembly in the context of severe anthropogenic disturbance remains lacking. Here, we explored community assembly processes after metal mining, which is considered to be a highly destructive activity to provide insight into the assembly rules associated with severe anthropogenic disturbance. Using a chronosequence approach, we selected vegetation patches representing different successional stages and collected data on eight plant functional traits from each stage. The traits were classified as establishment and regenerative traits. Based on these traits, null models were constructed to identify the processes driving assembly at various successional stages. Comparison of our observations with the null models indicated that establishment and regenerative traits converged in the primary stage of succession. As succession progressed, establishment traits shifted to neutral assembly, whereas regeneration traits alternately converged and diverged. The observed establishment traits were equal to expected values, whereas regenerative traits diverged significantly after more than 20 years of succession. Furthermore, the available Cr content was linked strongly to species'' ecological strategies. In the initial stages of vegetation succession in an abandoned metal mine, the plant community was mainly affected by the available metal content and dispersal limitation. It was probably further affected by strong interspecific interaction after the environmental conditions had improved, and stochastic processes became dominant during the stage with a successional age of more than 20 years.  相似文献   

17.
18.
稻田是温室气体甲烷的重要排放源之一,对全球气候变化具有重要影响.由隶属于NC10门的Candidatus Methylomirabilis oxyfera(M.oxyfera)-like细菌介导的亚硝酸盐型甲烷厌氧氧化是控制稻田甲烷排放的新途径.目前,有关此类微生物群落在稻田土壤中的时空分布特征及其环境影响因素尚不明确...  相似文献   

19.
20.
Microbial communities in natural ecosystems are subject to strong ecological rules. The study of local communities along a regional metacommunity can reveal patterns of community assembly, and disentangle the underlying ecological processes. In particular, we seek drivers of community assembly at the regional scale using a large lacustrine dataset (>300 lakes) along the geographical, limnological and physico-chemical gradients in the Pyrenees. By using high throughput amplicon sequencing of the 16S rRNA gene, and inferring environmental sources of bacterial immigrants, we showed that surface aquatic bacterial assemblages were strongly influenced by terrestrial populations from soil, biofilms or sediments, and primarily selected by a pH-alkalinity gradient. Indeed, source proportions explained 27% of the community variation, and chemistry 15% of the total variation, half of it shared with the sources. Major taxonomic groups such as Verrucomicrobia, Actinobacteria and Bacteroidetes showed higher aquatic affinities than Parcubacteria, Gammaproteobacteria, Alphaproteobacteria or Betaproteobacteria, which may be recruited and selected through different hydrographic habitats. A regional fingerprint was observed with lower alpha diversity and higher beta diversity in the central Pyrenees than in both ends. We suggest an ecological succession process, likely influenced by complex interactions of environmental source dispersal and environmental filtering along the mountain range geography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号