首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
It is generally accepted that the sensory and affective components of pain may be differentially associated with various acute and chronic diseases, and that some treatment regimens are best directed toward certain aspects of the pain experience. In addition, experimental animal models have been described that presume to assess either the sensory-discriminative aspects of phasic pain or the affective responses associated with tonic pain. The present psychophysical experiment directly compares the perceived intensity and unpleasantness of sensations evoked by four types of experimental noxious stimuli: contact heat, electric shock, ischemic exercise, and cold-pressor pain. A novel pain measurement technique is described that incorporates unbounded magnitude-estimation/category scales; this technique allows precise ratio responses, while minimizing within- and between- subject variability. We observe that, relative to the perceived intensity of the individual stimuli, subjects consistently differentiate among the degrees of unpleasantness evoked by the four stimulus modalities. Ischemic exercise and cold-pressor pain evoke higher estimates of unpleasantness, and thus may better mimic the pain of chronic disease. The relative unpleasantness produced by contact heat is significantly less than that of the other modalities tested, and therefore contact heat stimuli may be ideally suited for assessing sensory-discriminative aspects of pain perception. Possible neurophysiological mechanisms underlying the observed differences in perceived unpleasantness are discussed in relation to the growing body of literature concerning tonic and phasic pain stimuli.  相似文献   

4.
《Current biology : CB》2020,30(23):4789-4798.e4
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

5.
Glutamate is the primary excitatory transmitter of sensory transmission and perception in the central nervous system. Painful or noxious stimuli from the periphery ‘teach’ humans and animals to avoid potentially dangerous objects or environments, whereas tissue injury itself causes unnecessary chronic pain that can even last for long periods of time. Conventional pain medicines often fail to control chronic pain. Recent neurobiological studies suggest that synaptic plasticity taking place in sensory pathways, from spinal dorsal horn to cortical areas, contributes to chronic pain. Injuries trigger long-term potentiation of synaptic transmission in the spinal cord dorsal horn and anterior cingulate cortex, and such persistent potentiation does not require continuous neuronal activity from the periphery. At the synaptic level, potentiation of excitatory transmission caused by injuries may be mediated by the enhancement of glutamate release from presynaptic terminals and potentiated postsynaptic responses of AMPA receptors. Preventing, ‘erasing’ or reducing such potentiation may serve as a new mechanism to inhibit chronic pain in patients in the future.  相似文献   

6.
《Current biology : CB》2020,30(14):2777-2790.e4
  1. Download : Download high-res image (132KB)
  2. Download : Download full-size image
  相似文献   

7.
Distributions of corticospinal and corticobulbar neurons were revealed by tetramethylbenzidine (TMB) processing after injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA:HRP) into the cervical or lumbar enlargements of the spinal cord, or medullary or pontine levels of the brain stem. Sections reacted for cytochrome oxidase (CO) allowed patterns of labeled neurons to be related to the details of the body surface map in the first somatosensory cortical area (SI). The results indicate that a number of cortical areas project to these subcortical levels: (1) Projection neurons in granular SI formed a clear somatotopic pattern. The hindpaw region projected to the lumbar enlargement, the forepaw region to the cervical enlargement, the whisker pad field to the lower medulla, and the more rostral face region to more rostral brain stem levels. (2) Each zone of labeled neurons in SI extended into adjacent dysgranular somatosensory cortex, forming a second somatotopic pattern of projection neurons. (3) A somatotopic pattern of projection neurons in primary motor cortex (MI) paralleled SI in mediolateral sequence corresponding to the hindlimb, forelimb, and face. (4) A weak somatotopic pattern of projection neurons was suggested in medial agranular cortex (Agm), indicating a premotor field with a rostromedial-to-caudolateral representation of hindlimb, forelimb, and face. (5) A somatotopic pattern of projection neurons representing the foot to face in a mediolateral sequence was observed in medial parietal cortex (PM) located between SI and area 17. (6) In the second somatosensory cortical area (SII), neurons projecting to the brain stem were immediately adjacent caudolaterally to the barrel field of SI, whereas neurons projecting to the upper spinal cord were more lateral. No projection neurons in this region were labeled by the injections in the lower spinal cord. (7) Other foci of projection neurons for the face and forelimb were located rostral to SII, providing evidence for a parietal ventral area (PV) in perirhinal cortex (PR) lateral to SI, and in cortex between SII and PM. None of these regions, which may be higher-order somatosensory areas, contained labeled neurons after injections in the lower spinal cord. Thus, more cortical fields directly influence brain stem and spinal cord levels related to sensory and motor functions of the face and forepaw than the hindlimb.

The termination patterns of corticospinal and corticobulbar projections were studied in other rats with injections of WGA:HRP in SI. Injections in lateral SI representing the face produced dense terminal label in the contralateral trigeminal complex. Injections in cortex devoted to the forelimb and forepaw labeled the contralateral cuneate nucleus and parts of the dorsal horn of the spinal cord. The cortical injections also demonstrated interconnections of parts of SI with some of the other regions of cortex with projections to the spinal cord, and provided further evidence for the existence of PV in rats.  相似文献   

8.
9.
10.
11.
The contribution of joint afferents to the response of cortical neurons in area 3a to mechanical stimulation of the contralateral hindlimb was evaluated in cats anesthetized with sodium pentobarbital and paralyzed with pancuronium bromide. The hindlimb projection to the pericruciate cortex was established by recording the evoked potentials to electrical stimulation of the sciatic nerve and some of its branches, the biceps-semitendinosus and the quadratus femoris

Out of 169 neurons, 63 responded exclusively to cutaneous stimuli (superficial), whereas the others could be activated by local pressure of hindlimb muscles and/or by joint rotation (deep). Deep neurons were classified as slowly adapting (SA) or rapidly adapting (RA) units. In the neurons responding exclusively to joint rotation, the site of the receptive field could not be identified with certainty. In 13 deep neurons, their firing was affected by rotation of multiple joints of the contralateral hindlimb

In an attempt to identify the source of activation of cortical neurons, partial denervations and muscle disconnections were performed in five animals to isolate and stimulate the hip capsule. In these preparations, in 14 of 15 cortical neurons the source of activation was localized in the periarticular muscles, with no response to mechanical stimulation of the joint capsule. Only one neuron (S A) could be selectively excited by punctate pressure on the hip capsule

Our results suggest that in neurons of area 3a of the cat, the information about the position of the femur relies mainly on muscle afferents  相似文献   

12.
It has been widely recognized that chronic pain could cause physiological changes at supraspinal levels. The delta-opioidergic system is involved in antinociception, emotionality, immune response and neuron-glia communication. In this study, we show that mice with chronic pain exhibit anxiety-like behavior and an increase of astrocytes in the cingulate cortex due to the dysfunction of cortical delta-opioid receptor systems. Using neural stem cells cultured from the mouse embryonic forebrain, astrocyte differentiation was clearly observed following long-term exposure to the selective delta-opioid receptor antagonist, naltrindole. We also found that micro-injection of either activated astrocyte or astrocyte-conditioned medium into the cingulate cortex of mice aggravated the expression of anxiety-like behavior. Our results indicate that the chronic pain process promotes astrogliosis in the cingulate cortex through the dysfunction of cortical delta-opioid receptors. This phenomenon may lead to emotional disorders including aggravated anxiety under chronic pain-like state.  相似文献   

13.

Background/Objective

Transcutaneous electrical stimulation has been proven to modulate nervous system activity, leading to changes in pain perception, via the peripheral sensory system, in a bottom up approach. We tested whether different sensory behavioral tasks induce significant effects in pain processing and whether these changes correlate with cortical plasticity.

Methodology/Principal Findings

This randomized parallel designed experiment included forty healthy right-handed males. Three different somatosensory tasks, including learning tasks with and without visual feedback and simple somatosensory input, were tested on pressure pain threshold and motor cortex excitability using transcranial magnetic stimulation (TMS). Sensory tasks induced hand-specific pain modulation effects. They increased pain thresholds of the left hand (which was the target to the sensory tasks) and decreased them in the right hand. TMS showed that somatosensory input decreased cortical excitability, as indexed by reduced MEP amplitudes and increased SICI. Although somatosensory tasks similarly altered pain thresholds and cortical excitability, there was no significant correlation between these variables and only the visual feedback task showed significant somatosensory learning.

Conclusions/Significance

Lack of correlation between cortical excitability and pain thresholds and lack of differential effects across tasks, but significant changes in pain thresholds suggest that analgesic effects of somatosensory tasks are not primarily associated with motor cortical neural mechanisms, thus, suggesting that subcortical neural circuits and/or spinal cord are involved with the observed effects. Identifying the neural mechanisms of somatosensory stimulation on pain may open novel possibilities for combining different targeted therapies for pain control.  相似文献   

14.
Cheng JK  Ji RR 《Neurochemical research》2008,33(10):1970-1978
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Aδ-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-α, IL-1β), PGE2, bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Nav1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

15.
1. Dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are sex hormone precursors which exert marked neurotrophic and/or neuroprotective activity in the central nervous system (CNS).2. In the present electrophysiological experiments, we studied the effects of peripherally administered DHEAS on responses of the primary somatosensory (SSI) and motor cortices (MI) of (i) anesthetized controls and (ii) MI focal cold-lesioned rats. (iii) The effects of DHEAS on the field excitatory postsynaptic potentials (fEPSPs) were also studied in vitro brain slices. DHEAS (50 mg/kg) was injected subcutaneously 12 h before and immediately after cold lesion induction. The anesthetized rats were fixed in a stereotaxic frame, the SSI and MI were exposed, and control SSI and MI responses were evoked by contralateral whisker pad stimulation. After registration of the evoked responses for a 35-min period, a copper cylinder (2 mm in diameter) cooled with a mixture of acetone and dry ice (−78 °C) was applied to produce a lesion in the MI and the registration of the evoked responses was then continued for an additional 360 min.3. In the controls, DHEAS administration resulted in slight increases in amplitude of both the SSI and the MI responses. After focal cold lesion induction, the most significant reduction in amplitude was observed at the focus of the lesion in the primary MI, but the amplitudes of the SSI responses were also decreased. After 3–5 h of lesion induction, the amplitudes started to increase around the injury in the primary MI, while the SSI response had already started to recover 2 h after induction of the MI lesion. In the course of the postlesion recovery period, the MI responses peripherally to the center of the lesion frequently exhibited extremely high and low amplitudes. The paired-pulse paradigm revealed changing, but basically high levels of disinhibition and facilitation in extended cortical areas after focal cortical cold lesion induction. The deviations (e.g., the extremely augmented responses) in cortical functioning of the anesthetized rats were unambiguously diminished by DHEAS administration, and the period required for the cortical responses to recover was significantly shorter after the steroid treatment. In the in vitro studies, however, DHEAS administration resulted in an enhanced level of disinhibition in extended cortical areas of both the hemispheres.4. This observation draws attention to the possible differences between the results obtained in different models (in vitro vs. in situ). Nevertheless, all the presented data suggest that DHEAS treatment might have neuroprotective effect on the neocortex at least at a short-time scale.  相似文献   

16.
17.
目的:探讨激活大鼠ACC脑区的阿片受体降低伤害刺激引起厌恶情绪的作用。方法:将实验大鼠随机分为7组,完全弗氏佐剂(CFA)+生理盐水(NS)组,生理盐水(NS)+生理盐水(NS)组,生理盐水(NS)+μ-阿片受体激动剂([DAla2, NMe-Phe4, Gly-ol5]enkephinlin, DAMGO)组,完全弗氏佐剂(CFA)+ 0.01/0.04/0.2/1 μg/μl DAMGO组(n=6)。实验周期为3 d,第1日测量基础值,第2日预先通过ACC区域给药1 μl,然后将0.08 ml完全弗氏佐剂(CFA)注射到大鼠左后脚掌,第3日观察大鼠的CPA反应、缩足反射潜伏期(PWL)和ACC脑区的电活动。结果:①皮下注射CFA的大鼠,注射前与注射后相比,PWL明显减少(P<0.05);②在笼具痛侧,CFA组大鼠停留的时间明显少于非痛侧(P<0.05);③在ACC脑区预先注射0.04/0.2/1 μg/μl DAMGO可明显减弱C-CPA反应(P<0.05);④在ACC脑区预先注射0.04/0.2/1 μg/μl DAMGO可以降低CFA诱发ACC脑区放电频率的增加(P<0.05)。结论:激活了大鼠ACC脑区上的μ-阿片受体可以降低伤害性刺激诱发的厌恶情绪的发生。  相似文献   

18.
The dynorphinergic system is involved in pain transmission at spinal level, where dynorphin exerts antinociceptive or pronociceptive effects, based on its opioid or non‐opioid actions. Surprisingly, little evidence is currently available concerning the supraspinal role of the dynorphinergic system in pain conditions. The present study aimed to investigate whether neuropathic pain is accompanied by prodynorphin (Pdyn) and κ‐opioid receptor (Oprk1) gene expression alterations in selected mouse brain areas. To this end, mice were subjected to chronic constriction injury of the right sciatic nerve and neuropathic pain behavioral signs were ascertained after 14 days. At this interval, a marked increase in Pdyn mRNA in the anterior cingulate cortex (ACC) and prefrontal cortex (PFC) was observed. Oprk1 gene expression was increased in the PFC, and decreased in the ACC and nucleus accumbens (NAc). No changes were observed in the other investigated regions. Because of the relationship between dynorphin and the brain‐derived neurotrophic factor, and the role of this neurotrophin in chronic pain‐related neuroplasticity, we investigated brain‐derived neurotrophic factor gene (Bdnf) expression in the areas showing Pdyn or Oprk1 mRNAs changes. Bdnf mRNA levels were increased in both the ACC and PFC, whereas no changes were assessed in the NAc. Present data indicate that the dynorphinergic system undergoes quite selective alterations involving the corticostriatal circuitry during neuropathic pain, suggesting a contribution to the negative affective component of pain. Moreover, parallel increases in Pdyn and Bdnf mRNA at cortical level suggest the occurrence of likely interactions between these systems in neuropathic pain maladaptive neuroplasticity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号