首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During an unusual cold‐water event in January 2010, reefs along the Florida Reef Tract suffered extensive coral mortality, especially in shallow reef habitats in close proximity to shore and with connections to coastal bays. The threatened staghorn coral, Acropora cervicornis, is the focus of propagation and restoration activities in Florida and one of the species that exhibited high susceptibility to low temperatures. Complete mortality of wild staghorn colonies was documented at 42.9% of donor sites surveyed after the cold event. Remarkably, 72.7% of sites with complete A. cervicornis mortality had fragments surviving within in situ coral nurseries. Thus, coral nurseries served as repositories for genetic material that would have otherwise been completely lost from donor sites. The location of the coral nurseries at deeper habitats and distanced from shallow nearshore habitats that experienced extreme temperature conditions buffered the impacts of the cold‐water event and preserved essential local genotypes for future Acropora restoration activities.  相似文献   

2.
Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD), and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49) are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.  相似文献   

3.
The Caribbean staghorn coral, Acropora cervicornis, was once a dominant habitat creating coral, but its populations have declined dramatically in recent decades. Numerous restoration efforts now utilize coral gardening techniques to cultivate this species, growing colonies on fixed structures or from line/suspended nurseries. Line nurseries have become increasingly popular because of their small footprint and ease of use, replacing fixed structures in many nurseries. To evaluate the efficacy of the line technique, this study evaluated growth, condition, and survivorship of A. cervicornis nursery colonies of three distinct genotypes grown via two line nursery techniques (suspended and direct line attachment [vertical]). Direct line attachment of nursery colonies resulted in poor survival (43%) and growth (9.5 ± 1.33 cm/year), whereas suspended culture had 100% survival and increased growth (61.1 ± 4.19 cm/year). Suspended culture had significantly reduced disease prevalence and prevented colony predation. Suspended coral growth was also comparable to a neighboring fixed structure nursery (55.2 ± 7.86 cm/year), and found to be as effective in propagating corals as fixed structures.  相似文献   

4.
Recent declines in coral populations along the Florida reef tract have prompted the establishment of coral restoration programs which raise coral species, such as the threatened Acropora cervicornis, in nurseries ready for outplanting. Large numbers of nursery‐reared coral colonies have been outplanted along the Florida reef tract in recent years, yet few studies have characterized benthic habitats that are considered optimal for colony survival. In 2016, we surveyed 23 A. cervicornis restoration sites, located at six different reefs in the upper Florida Keys. We examined the condition of the outplanted corals and quantified the benthic assemblages adjacent to the outplanted coral colonies. We found that where A. cervicornis survived for more than 1 year, the substrate significantly supported less brown macroalgae of the genus Dictyota than at sites where A. cervicornis had died. Coral survival was highest at sites with less than 15% Dictyota cover. These results suggest that the habitat conditions that supported Dictyota spp. were not conducive to A. cervicornis growth and survival. Restoration practitioners should avoid attaching nursery‐raised corals to substrate with Dictyota spp. cover greater than 15%.  相似文献   

5.

Background

Reef-building corals live in symbiosis with a diverse range of dinoflagellate algae (genus Symbiodinium) that differentially influence the fitness of the coral holobiont. The comparative role of symbiont type in holobiont fitness in relation to host genotype or the environment, however, is largely unknown. We addressed this knowledge gap by manipulating host-symbiont combinations and comparing growth, survival and thermal tolerance among the resultant holobionts in different environments.

Methodology/Principal Findings

Offspring of the coral, Acropora millepora, from two thermally contrasting locations, were experimentally infected with one of six Symbiodinium types, which spanned three phylogenetic clades (A, C and D), and then outplanted to the two parental field locations (central and southern inshore Great Barrier Reef, Australia). Growth and survival of juvenile corals were monitored for 31–35 weeks, after which their thermo-tolerance was experimentally assessed. Our results showed that: (1) Symbiodinium type was the most important predictor of holobiont fitness, as measured by growth, survival, and thermo-tolerance; (2) growth and survival, but not heat-tolerance, were also affected by local environmental conditions; and (3) host population had little to no effect on holobiont fitness. Furthermore, coral-algal associations were established with symbiont types belonging to clades A, C and D, but three out of four symbiont types belonging to clade C failed to establish a symbiosis. Associations with clade A had the lowest fitness and were unstable in the field. Lastly, Symbiodinium types C1 and D were found to be relatively thermo-tolerant, with type D conferring the highest tolerance in A. millepora.

Conclusions/Significance

These results highlight the complex interactions that occur between the coral host, the algal symbiont, and the environment to shape the fitness of the coral holobiont. An improved understanding of the factors affecting coral holobiont fitness will assist in predicting the responses of corals to global climate change.  相似文献   

6.

Background

Climate-induced coral bleaching poses a major threat to coral reef ecosystems, mostly because of the sensitivities of key habitat-forming corals to increasing temperature. However, susceptibility to bleaching varies greatly among coral genera and there are likely to be major changes in the relative abundance of different corals, even if the wholesale loss of corals does not occur for several decades. Here we document variation in bleaching susceptibility among key genera of reef-building corals in Moorea, French Polynesia, and compare bleaching incidence during mass-bleaching events documented in 1991, 1994, 2002 and 2007.

Methodology/Principal Findings

This study compared the proportion of colonies that bleached for four major genera of reef-building corals (Acropora, Montipora, Pocillopora and Porites), during each of four well-documented bleaching events from 1991 to 2007. Acropora and Montipora consistently bleached in far greater proportions (up to 98%) than Pocillopora and Porites. However, there was an apparent and sustained decline in the proportion of colonies that bleached during successive bleaching events, especially for Acropora and Montipora. In 2007, only 77% of Acropora colonies bleached compared with 98% in 1991. Temporal variation in the proportion of coral colonies bleached may be attributable to differences in environmental conditions among years. Alternately, the sustained declines in bleaching incidence among highly susceptible corals may be indicative of acclimation or adaptation.

Conclusions/Significance

Coral genera that are highly susceptible to coral bleaching, and especially Acropora and Montipora, exhibit temporal declines in their susceptibility to thermal anomalies at Moorea, French Polynesia. One possible explanation for these findings is that gradual removal of highly susceptible genotypes (through selective mortality of individuals, populations, and/or species) is producing a coral assemblage that is more resistant to sustained and ongoing ocean warming.  相似文献   

7.

Background

Coral reefs worldwide are in decline. Much of the mortality can be attributed to coral bleaching (loss of the coral''s intracellular photosynthetic algal symbiont) associated with global warming. How corals will respond to increasing oceanic temperatures has been an area of extensive study and debate. Recovery after a bleaching event is dependent on regaining symbionts, but the source of repopulating symbionts is poorly understood. Possibilities include recovery from the proliferation of endogenous symbionts or recovery by uptake of exogenous stress-tolerant symbionts.

Methodology/Principal Findings

To test one of these possibilities, the ability of corals to acquire exogenous symbionts, bleached colonies of Porites divaricata were exposed to symbiont types not normally found within this coral and symbiont acquisition was monitored. After three weeks exposure to exogenous symbionts, these novel symbionts were detected in some of the recovering corals, providing the first experimental evidence that scleractinian corals are capable of temporarily acquiring symbionts from the water column after bleaching. However, the acquisition was transient, indicating that the new symbioses were unstable. Only those symbiont types present before bleaching were stable upon recovery, demonstrating that recovery was from the resident in situ symbiont populations.

Conclusions/Significance

These findings suggest that some corals do not have the ability to adjust to climate warming by acquiring and maintaining exogenous, more stress-tolerant symbionts. This has serious ramifications for the success of coral reefs and surrounding ecosystems and suggests that unless actions are taken to reverse it, climate change will lead to decreases in biodiversity and a loss of coral reefs.  相似文献   

8.
Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and <50% of the A. cervicornis population along the FRT, the remaining wild staghorn population, along with the rapidly increasing restored populations, continue to fulfill important functional roles on coral reefs by providing essential habitat and refuge to other reef organisms. Although the effects of damselfish predation are, and will continue to be, pervasive, successful restoration efforts and strategic coral transplantation designs may help overcome damselfish damage by rapidly increasing A. cervicornis cover and abundance while also providing important information to educate future conservation and management decisions.  相似文献   

9.
The symbiont “Candidatus Aquarickettsia rohweri” infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid (“Ac. prolifera”). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral’s algal symbiont (Symbiodiniumfitti”). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.Subject terms: Population genetics, Phylogenetics  相似文献   

10.

Background

The dinoflagellate genus Symbiodinium forms symbioses with numerous protistan and invertebrate metazoan hosts. However, few data on symbiont genetic structure are available, hindering predictions of how these populations and their host associations will fair in the face of global climate change.

Methodology/Principal Findings

Here, Symbiodinium population structure from two of the Caribbean''s ecologically dominant scleractinian corals, Montastraea faveolata and M. annularis, was examined. Tagged colonies on Florida Keys and Bahamian (i.e., Exuma Cays) reefs were sampled from 2003–2005 and their Symbiodinium diversity assessed via internal transcribed spacer 2 (ITS2) rDNA and three Symbiodinium Clade B-specific microsatellite loci. Generally, the majority of host individuals at a site harbored an identical Symbiodinium ITS2 “type” B1 microsatellite genotype. Notably, symbiont genotypes were largely reef endemic, suggesting a near absence of dispersal between populations. Relative to the Bahamas, sympatric M. faveolata and M. annularis in the Florida Keys harbored unique Symbiodinium populations, implying regional host specificity in these relationships. Furthermore, within-colony Symbiodinium population structure remained stable through time and environmental perturbation, including a prolonged bleaching event in 2005.

Conclusions/Significance

Taken together, the population-level endemism, specificity and stability exhibited by Symbiodinium raises concerns about the long-term adaptive capacity and persistence of these symbioses in an uncertain future of climate change.  相似文献   

11.
In preparation for a large-scale coral restoration project, we surveyed host population genetic structure and symbiont diversity of two reef-building corals in four reef zones along the Florida reef tract (FRT). There was no evidence for coral population subdivision along the FRT in Acropora cervicornis or Montastraea faveolata based on microsatellite markers. However, in A. cervicornis, significant genetic differentiation was apparent when extending the analysis to broader scales (Caribbean). Clade diversity of the zooxanthellae differed along the FRT. A. cervicornis harbored mostly clade A with clade D zooxanthellae being prominent in colonies growing inshore and in the mid-channel zones that experience greater temperature fluctuations and receive significant nutrient and sediment input. M. faveolata harbored a more diverse array of symbionts, and variation in symbiont diversity among four habitat zones was more subtle but still significant. Implications of these results are discussed for ongoing restoration and conservation work.  相似文献   

12.

Background

Lipids in reef building corals can be divided into two classes; non-polar storage lipids, e.g. wax esters and triglycerides, and polar structural lipids, e.g. phospholipids and cholesterol. Differences among algal endosymbiont types are known to have important influences on processes including growth and the photobiology of scleractinian corals yet very little is known about the role of symbiont types on lipid energy reserves.

Methodology/Principal Findings

The ratio of storage lipid and structural lipid fractions of Scott Reef corals were determined by thin layer chromatography. The lipid fraction ratio varied with depth and depended on symbiont type harboured by two corals (Seriatopora hystrix and Pachyseris speciosa). S. hystrix colonies associated with Symbiodinium C1 or C1/C# at deep depths (>23 m) had lower lipid fraction ratios (i.e. approximately equal parts of storage and structural lipids) than those with Symbiodinium D1 in shallow depths (<23 m), which had higher lipid fraction ratios (i.e. approximately double amounts of storage relative to structural lipid). Further, there was a non-linear relationship between the lipid fraction ratio and depth for S. hystrix with a modal peak at ∼23 m coinciding with the same depth as the shift from clade D to C types. In contrast, the proportional relationship between the lipid fraction ratio and depth for P. speciosa, which exhibited high specificity for Symbiodinium C3 like across the depth gradient, was indicative of greater amounts of storage lipids contained in the deep colonies.

Conclusions/Significance

This study has demonstrated that Symbiodinium exert significant controls over the quality of coral energy reserves over a large-scale depth gradient. We conclude that the competitive advantages and metabolic costs that arise from flexible associations with divergent symbiont types are offset by energetic trade-offs for the coral host.  相似文献   

13.
In recent decades, the Florida reef tract has lost over 95% of its coral cover. Although isolated coral assemblages persist, coral restoration programs are attempting to recover local coral populations. Listed as threatened under the Endangered Species Act, Acropora cervicornis is the most widely targeted coral species for restoration in Florida. Yet strategies are still maturing to enhance the survival of nursery‐reared outplants of A. cervicornis colonies on natural reefs. This study examined the survival of 22,634 A. cervicornis colonies raised in nurseries along the Florida reef tract and outplanted to six reef habitats in seven geographical subregions between 2012 and 2018. A Cox proportional hazards regression was used within a Bayesian framework to examine the effects of seven variables: (1) coral‐colony size at outplanting, (2) coral‐colony attachment method, (3) genotypic diversity of outplanted A. cervicornis clusters, (4) reef habitat, (5) geographical subregion, (6) latitude, and (7) the year of monitoring. The best models included coral‐colony size at outplanting, reef habitat, geographical subregion, and the year of monitoring. Survival was highest when colonies were larger than 15 cm (total linear extension), when outplanted to back‐reef and fore‐reef habitats, and when outplanted in Biscayne Bay and Broward–Miami subregions, in the higher latitudes of the Florida reef tract. This study points to several variables that influence the survival of outplanted A. cervicornis colonies and highlights a need to refine restoration strategies to help restore their population along the Florida reef tract.  相似文献   

14.
Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD), resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida''s A. cervicornis populations are highly genetically interconnected (FST = −0.081). Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824) relative to the rest of the greater Caribbean (h = 0.701±0.043). We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted ( = 0.117), but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than relying on larval inputs from elsewhere.  相似文献   

15.

Background

We test whether the phenotypic variance of symbionts (Symbiodinium) in corals is closely related with the capacity of corals to acclimatize to increasing seawater temperatures. Moreover, we assess whether more specialist symbionts will increase within coral hosts under ocean warming. The present study is only applicable to those corals that naturally have the capacity to support more than one type of Symbiodinium within the lifetime of a colony; for example, Montastraea annularis and Montastraea faveolata.

Methodology/Principal Findings

The population dynamics of competing Symbiodinium symbiont populations were projected through time in coral hosts using a novel, discrete time optimal–resource model. Models were run for two Atlantic Ocean localities. Four symbiont populations, with different environmental optima and phenotypic variances, were modeled to grow, divide, and compete in the corals under seasonal fluctuations in solar insolation and seawater temperature. Elevated seawater temperatures were input into the model 1.5°C above the seasonal summer average, and the symbiont population response was observed for each location. The models showed dynamic fluctuations in Symbiodinium populations densities within corals. Population density predictions for Lee Stocking Island, the Bahamas, where temperatures were relatively homogenous throughout the year, showed a dominance of both type 2, with high phenotypic variance, and type 1, a high-temperature and high-insolation specialist. Whereas the densities of Symbiodinium types 3 and 4, a high-temperature, low-insolation specialist, and a high-temperature, low-insolation generalist, remained consistently low. Predictions for Key Largo, Florida, where environmental conditions were more seasonally variable, showed the coexistence of generalists (types 2 and 4) and low densities of specialists (types 1 and 3). When elevated temperatures were input into the model, population densities in corals at Lee Stocking Island showed an emergence of high-temperature specialists. However, even under high temperatures, corals in the Florida Keys were dominated by generalists.

Conclusions/Significance

Predictions at higher seawater temperatures showed endogenous shuffling and an emergence of the high-temperature Symbiodinium specialists, even though their phenotypic variance was low. The model shows that sustaining these “hidden” specialists becomes advantageous under thermal stress conditions, and shuffling symbionts may increase the corals'' capacity to acclimatize but not adapt to climatechange–induced ocean warming.  相似文献   

16.
Studies on coral reef restoration through a two-step coral gardening protocol have lately proved it to be a viable solution for future reef restoration. This involves a first step of gardening small colonies in mid-water nurseries and a second step, their transplantation, upon reaching suitable size, onto the pre-surveyed damaged areas. We established in September 2007 two mid-water nurseries, each holding 10,000 fragments measuring 2 cm average initial size, at 4 m depths (high tide) in Zanzibar and Mafia Islands, Tanzania. Each nursery comprised six species, each of which was represented by three genotypes. During 9 months, we followed developments by analyzing and comparing survivorship and growth rates of fragments between the different nurseries, species and genotypes. A significant difference between species survival and growth rates was observed in acroporid species, in Pocillopora verrucosa and Millepora sp., which showed better success than Porites cylindrica. In both sites, Millepora suffered no mortality and other species exhibited low mortality, ranging (per coral genotype) between 3% and 24% in Zanzibar (most cases below 10%) and between 13% and 44% (mostly below 25%) in Mafia Island. Most of fragments’ mortality occurred during the first two nursery months. Coral species in Zanzibar nursery also performed better in growth rates than those in Mafia, but in both sites, farmed corals were ready for transplantation just 9 months after the nursery was set up. Economic evaluations involved in the overall nursery set-up and the results indicated that the coral gardening approach could be used in Tanzania to generate large quantities of coral colonies for the restoration of damaged reefs at relatively low cost.  相似文献   

17.
As coral reefs decline, cryptic sources of resistance and resilience to stress may be increasingly important for the persistence of these communities. Among these sources, inter‐ and intraspecific diversity remain understudied on coral reefs but extensively impact a variety of traits in other ecosystems. We use a combination of field and sequencing data at two sites in Florida and two in the Dominican Republic to examine clonal diversity and genetic differentiation of high‐ and low‐density aggregations of the threatened coral Acropora cervicornis in the Caribbean. We find that high‐density aggregations called thickets are composed of up to 30 genotypes at a single site, but 47% of genotypes are also found as isolated, discrete colonies outside these aggregations. Genet–ramet ratios are comparable for thickets (0.636) and isolated colonies after rarefaction (0.569), suggesting the composition of each aggregation is not substantially different and highlighting interactions between colonies as a potential influence on structure. There are no differences in growth rate, but a significant positive correlation between genotypic diversity and coral cover, which may be due to the influence of interactions between colonies on survivorship or fragment retention during asexual reproduction. Many polymorphisms distinguish isolated colonies from thickets despite the shared genotypes found here, including putative nonsynonymous mutations that change amino acid sequence in 25 loci. These results highlight intraspecific diversity as a density‐dependent factor that may impact traits important for the structure and function of coral reefs.  相似文献   

18.
19.
Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts (Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.  相似文献   

20.

Background

Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown.

Methodology/Principal Findings

The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall), based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies.

Conclusions/Significance

While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号