首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD), resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida''s A. cervicornis populations are highly genetically interconnected (FST = −0.081). Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824) relative to the rest of the greater Caribbean (h = 0.701±0.043). We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted ( = 0.117), but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than relying on larval inputs from elsewhere.  相似文献   

2.
3.
Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and <50% of the A. cervicornis population along the FRT, the remaining wild staghorn population, along with the rapidly increasing restored populations, continue to fulfill important functional roles on coral reefs by providing essential habitat and refuge to other reef organisms. Although the effects of damselfish predation are, and will continue to be, pervasive, successful restoration efforts and strategic coral transplantation designs may help overcome damselfish damage by rapidly increasing A. cervicornis cover and abundance while also providing important information to educate future conservation and management decisions.  相似文献   

4.
5.
We developed a method for quantifying the abundance of the threatened staghorn coral (Acropora cervicornis) and evaluated the accuracy of commonly used methods to assess colony condition. For small‐ to medium‐sized colonies, we show that colony ellipsoid volume estimated from simple colony dimensions serves as a reliable and efficient proxy for the more time‐consuming, conventional measure of colony total linear extension, and that this predictive relationship varies significantly among extant populations in the Caribbean. We also determined that visual estimates of colony partial mortality closely approximate to true values for colonies with <25% mortality, with in situ estimates outperforming estimates from digital images. These results provide coral reef managers and restoration practitioners with guidance for assessing partial mortality and location‐specific regression models to estimate “amount” of staghorn coral in both extant and restored staghorn populations in Belize, the United States Virgin Islands, and the Dry Tortugas National Park, Florida, U.S.A. As staghorn coral monitoring and restoration efforts continue to expand in the Caribbean, these methods for quickly determining staghorn abundance and condition will directly aid resource managers tasked with monitoring wild populations and tracking restoration success over time.  相似文献   

6.
7.
Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.  相似文献   

8.
Caribbean reefs have steadily declined during the past 30 years. Thermal disturbances that elicit coral bleaching have been identified as a major driver of such coral degradation. It has been suggested that either the evolution of more tolerant symbionts, or shifts in the distribution of existing, tolerant symbionts could ameliorate the effect of rising sea temperatures on Caribbean reefs. Using a spatial ecosystem model we describe the characteristics that new tolerant symbionts, ‘super-symbionts’, and their coral hosts, require for coral cover to be maintained. We also quantify the time necessary for such symbionts to become dominant before their potential beneficial effect is lost. Running scenarios under two levels of greenhouse gas emissions, we find that aggressive action to reduce emissions could almost triple the time available for new super-symbionts to become dominant and potentially mitigate the effect of thermal disturbances. The benefits of thermally tolerant super-symbionts depend on the life-history traits of the host, the number of coral species infected and the present coral assemblage. Corals that are strong competitors with macroalgae are likely to become dominant on future reefs if a super-symbiont appears in the next 25–60 years. In principle, super-symbionts could have ecosystem-level benefits in the Caribbean providing that they become dominant in multiple coral hosts with specific life-history traits within the next 60 years. This potential benefit would only be realized if the appearance of the super-symbiont is combined with drastic reductions of greenhouse gas emissions and maintenance of ecosystem processes such as herbivory.  相似文献   

9.
Coral reef conservation requires information about the distance over which healthy reefs can rescue damaged reefs through input of coral larvae. This information is desperately needed in the Caribbean where the 2 dominant shallow water corals Acropora cervicornis and Acropora palmata have suffered unprecedented declines. Here we compare the population genetic structure in the staghorn coral A. cervicornis across the greater Caribbean using DNA sequence data from 1 mitochondrial and 3 nuclear genes. Data from 160 individuals from 22 populations and 9 regions show that A. cervicornis exhibits significant population genetic structure across the greater Caribbean in both the mitochondrial (Phi(st) = 0.130) and nuclear data (Phi(st) = 0.067). The highest population structure was observed in the species' own, native mtDNA haplotypes (Phi(st) = 0.235). Introgressed alleles from A. palmata tempered higher population structure in A. cervicornis over regional scales but in some cases generated highly localized "introgression hot spots" and fine-scale genetic structure among reefs separated by as few as 2 km. These data show that larval dispersal over moderate or long distances (>500 km) is limited for this threatened species and in some cases locally limited as well. Thus, the endangered Caribbean staghorn corals require local source populations for their recovery and targeted conservation efforts over spatial scales much smaller than the hundreds to thousands of kilometers usually proposed for marine reserves.  相似文献   

10.

Background

Reef-building corals live in symbiosis with a diverse range of dinoflagellate algae (genus Symbiodinium) that differentially influence the fitness of the coral holobiont. The comparative role of symbiont type in holobiont fitness in relation to host genotype or the environment, however, is largely unknown. We addressed this knowledge gap by manipulating host-symbiont combinations and comparing growth, survival and thermal tolerance among the resultant holobionts in different environments.

Methodology/Principal Findings

Offspring of the coral, Acropora millepora, from two thermally contrasting locations, were experimentally infected with one of six Symbiodinium types, which spanned three phylogenetic clades (A, C and D), and then outplanted to the two parental field locations (central and southern inshore Great Barrier Reef, Australia). Growth and survival of juvenile corals were monitored for 31–35 weeks, after which their thermo-tolerance was experimentally assessed. Our results showed that: (1) Symbiodinium type was the most important predictor of holobiont fitness, as measured by growth, survival, and thermo-tolerance; (2) growth and survival, but not heat-tolerance, were also affected by local environmental conditions; and (3) host population had little to no effect on holobiont fitness. Furthermore, coral-algal associations were established with symbiont types belonging to clades A, C and D, but three out of four symbiont types belonging to clade C failed to establish a symbiosis. Associations with clade A had the lowest fitness and were unstable in the field. Lastly, Symbiodinium types C1 and D were found to be relatively thermo-tolerant, with type D conferring the highest tolerance in A. millepora.

Conclusions/Significance

These results highlight the complex interactions that occur between the coral host, the algal symbiont, and the environment to shape the fitness of the coral holobiont. An improved understanding of the factors affecting coral holobiont fitness will assist in predicting the responses of corals to global climate change.  相似文献   

11.

Background

Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances.

Methodology and Principal Findings

In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum) and the ocean surgeonfish (Acanthurus bahianus); in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus). On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae.

Significance

This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental stage of the community. The species-specific effects of herbivorous fishes suggest that a species-rich herbivore fauna can be critical in providing the resilience that reefs need for recovery from common disturbances such as coral bleaching and storm damage.  相似文献   

12.
The settlement specificity of two threatened Caribbean corals, Acropora palmata and A. cervicornis, was tested by measuring their rates of larval metamorphosis in response to crustose coralline algae (CCA) and other substrata. In the no-choice experiments, the coral larvae were placed in six treatments: filtered seawater (FSW), a fragment of biofilmed dead skeleton of A. palmata, or a fragment of one of four species of CCA (Hydrolithon boergesenii, Porolithon pachydermum, Paragoniolithon solubile, and Titanoderma prototypum). Within each CCA treatment, there were three different substrata on which to settle and metamorphose: (1) the CCA surface, (2) the rock under the CCA, or (3) the plastic dish. The 5-day-old larvae of both A. palmata and A. cervicornis had similar rates of total metamorphosis (all substrata combined) in every treatment (excluding FSW) even in the absence of CCA. However, there were differences in larval behavior among the CCA species since the larvae settled and metamorphosed on different substrata in the presence of different CCA species. In the no-choice experiments the larvae of both corals had higher rates of metamorphosis on the top surfaces of H. boergesenii and/or T. prototypum than on P. pachydermum. In the choice experiments, the coral larvae were offered two species of CCA in the same dish. When given a choice, both species of coral larvae had more settlement and metamorphosis on the surface of H. boergesenii or T. prototypum or clean rock than onto the surface of P. solubile. After 6 weeks in the field, transplanted A. palmata recruits had approximately 15% survival on both T. prototypum and H. boergesenii, but A. cervicornis recruits only survived on T. prototypum (13%). Some, but not all, CCA species facilitated the larval settlement and post-settlement survival of these two threatened corals, highlighting the importance of benthic community composition for successful coral recruitment.  相似文献   

13.
 In recent years, marine scientists have become increasingly alarmed over the decline of live coral cover throughout the Caribbean and tropical western Atlantic region. The Holocene and Pleistocene fossil record of coral reefs from this region potentially provides a wealth of long-term ecologic information with which to assess the historical record of changes in shallow water coral reef communities. Before fossil data can be applied to the modern reef system, critical problems involving fossil preservation must be addressed. Moreover, it must be demonstrated that the classic reef coral zonation patterns described in the early days of coral reef ecology, and upon which “healthy” versus “unhealthy” reefs are determined, are themselves representative of reefs that existed prior to any human influence. To address these issues, we have conducted systematic censuses of life and death assemblages on modern “healthy” patch reefs in the Florida reef tract that conform to the classic Caribbean model of reef coral zonation, and a patch reef in the Bahamas that is currently undergoing a transition in coral dominance that is part of a greater Caribbean-wide phenomenon. Results were compared to censuses of ancient reef assemblages preserved in Pleistocene limestones in close proximity to each modern reef. We have determined that the Pleistocene fossil record of coral reefs may be used to calibrate an ecological baseline with which to compare modern reef assemblages, and suggest that the current and rapid decline of Acropora cervicornis observed on a Bahamian patch reef may be a unique event that contrasts with the long-term persistence of this taxon during Pleistocene and Holocene time. Accepted: 19 May 1998  相似文献   

14.
Abstract Coral reef degradation has been widely reported for the past 20 years. Because the recovery rate is usually low, various methods of restoration have been explored in different regions of the world. Among the effective and commonly used methods to restore coral communities is the transplantation of coral colonies or fragments. In this investigation fragments of Acropora pulchra were used in a semiprotected nursery in southern Taiwan between 1996 and 1998 to test, in situ, the possible effects of different factors on the generation of new branches and the initial skeletal extension rates of transplants. The variables under study here were the origin and length of the fragments, their new orientation, presence of tissue injury, and position in the fragment. All these factors were found to make a difference in either one or both aspects of coral growth (i.e., branching frequency and skeletal extension rate). These two factors clearly determine the success rate of a small fragment developing into a large colony that has a much higher probability to survive and grow on its own. It is now obvious that the efficiency of coral generation through fragment culture can be enhanced if the variables examined here are taken into consideration. Once coral colonies are formed, they can be fragmented again to generate more corals or can be transplanted to a suitable site.  相似文献   

15.
16.
In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria (“Photobacterium mandapamensis” and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces.Serratia is a gammaproteobacterium frequently isolated from waters, plants, and animals (7). Some isolates of Serratia are well-characterized symbionts of invertebrates. Serratia marcescens and Serratia liquefaciens have been identified as vertically transmitted symbionts of the sugar beet maggot (9). Serratia colonizes male and female reproductive tracts of the maggots, eggs, and pharyngeal filter. There, the bacteria are hypothesized to aid in metamorphosis by digesting chitinous puparial walls (9). In the gut of another insect, the diamondback moth, strains of S. marcescens appear to live as commensals capable of modestly (5 to 8%) increasing growth rates of the host (8). Serratia strains have also been isolated from feces and cloacal swabs from clinically normal captive birds, but not from organs or carcasses of sick or diseased animals housed within the same facility (3, 20). Serratia spp. have also been linked to diseases of invertebrate animals and their larvae (for reviews, see references 7, 15, and 21). To cause diseases in nematodes and flies, S. marcescens first colonizes the intestines, degrades cells of the alimentary tract and then spreads to other organs (14, 21). There are, however, exceptions to this mode of infection. Serratia entomophila, the causal agent of amber disease in grubs, grows within the alimentary tract of the animal to >106 CFU. However, bacteria neither attach to nor colonize surfaces of the gut; rather, they adhere to gut contents (10) and cause the appearance of signs by producing the Sep toxin that inhibits accumulation of the insect''s digestive serine proteases and disrupts the cytoskeletal network (6). It appears, therefore, that various isolates of Serratia are capable of entering into a full range of interactions (from mutualistic to commensal to pathogenic) with their animal hosts (for reviews, see references 7, 15, and 21).A strain of S. marcescens, PDL100, was shown to be associated with white pox disease of the threatened Caribbean coral Acropora palmata (22, 27). White pox disease results in coral tissue necrosis, exposing carbonate skeleton at a rate of 2.5 cm2 day−1 (22). It is not yet clear how S. marcescens PDL100 colonizes and infects corals. It is likely that to cause disease, the pathogen first needs to colonize and establish within the coral surface mucus layer.The coral surface mucus layer contains polymers of mixed origin. Coral mucus is made in the mucocytes of the polyp, where the photosynthate produced by the coral symbiotic dinoflagellate Symbiodinium spp. is converted into polymers that are excreted onto the coral surface (for a review, see reference 2). A glycoprotein is the major component of coral mucus from both hard and soft corals (16, 17, 19). The composition of the glycoprotein differs among coral species (4, 17). The mucus polymer of Acropora formosa, for example, contains 36 to 38% of neutral sugars, 18 to 22% of amino sugars, and 19 to 30% of amino acids; lipids make up 4.2% of the polymer (17). In the mucus of A. formosa, the oligosaccharide decorations (two to four sugar residues long) are attached to the polypeptide backbone by an O-glycosidic link to serine or threonine through the carbon 1 of mannose (16). The glycoproteins from A. formosa and Pseudopterogorgia americana corals contain terminal arabinose residues linked by a β1→2 or β1→3 bond. In the mucus of acroporid corals, arabinose, N-acetyl-glucosamine, mannose, glucose, galactose, N-acetyl-galactosamine, and fucose were the major sugars; serine and threonine were the major amino acids (4, 17). The elucidation of the chemical structure of coral mucus is complicated by the fact that the mucus contains excretions of coral mucocytes, extracellular substances produced by the associated microbiota as well as oligomers that may result from the degradation of these polymers (for reviews, see references 2 and 24).In this study, we tested the hypothesis that S. marcescens PDL100 is capable of a more extensive utilization of A. palmata mucus than other environmental or pathogenic isolates of S. marcescens. This hypothesis is based on the recent discoveries that pathogenic and commensal host-associated bacteria differ in their patterns of carbon source utilization during growth on components of the mucus that lines host surfaces (5, 26). These different strategies of mucus utilization may allow pathogenic bacteria to outcompete native residents and establish within the host''s mucosa (5, 13, 26). To test this hypothesis, growth of the strain PDL100 on coral mucus and enzymatic activities induced during growth on mucus were assayed and compared to those of pathogenic and environmental isolates of S. marcescens and three native coral-associated bacteria.  相似文献   

17.
18.
19.
We have determined the genomic structure of an integrin β-subunit gene from the coral, Acropora millepora. The coding region of the gene contains 26 introns, spaced relatively uniformly, and this is significantly more than have been found in any integrin β-subunit genes from higher animals. Twenty-five of the 26 coral introns are also found in a β-subunit gene from at least one other phylum, indicating that the coral introns are ancestral. While there are some suggestions of intron gain or sliding, the predominant theme seen in the homologues from higher animals is extensive intron loss. The coral baseline allows one to infer that a number of introns found in only one phylum of higher animals result from frequent intron loss, as opposed to the seemingly more parsimonious alternative of isolated intron gain. The patterns of intron loss confirm results from protein sequences that most of the vertebrate genes, with the exception of β4, belong to one of two β subunit families. The similarity of the patterns within each of the β1,2,7 and β3,5,6,8 groups indicates that these gene structures have been very stable since early vertebrate evolution. Intron loss has been more extensive in the invertebrate genes, and obvious patterns have yet to emerge in this more limited data set. Received: 5 March 2001 / Accepted: 17 May 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号