首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We have used calcium imaging to visualize the spatiotemporal organization of activity generated by in vitro spinal cord preparations of the developing chick embryo and the neonatal mouse. During each episode of spontaneous activity, we found that chick spinal neurons were activated rhythmically and synchronously throughout the transverse extent of the spinal cord. At the onset of a spontaneous episode, optical activity originated in the ventrolateral part of the cord. Back-labeling of spinal interneurons with calcium dyes suggested that this ventrolateral initiation was mediated by activation of a class of interneurons, located dorsomedial to the motor nucleus, that receive direct monosynaptic input from motoneurons. Studies of locomotor-like activity in the anterior lumbar segments of the neonatal mouse cord revealed the existence of a rostrocaudal wave in the oscillatory component of each cycle of rhythmic motoneuron activity. This finding raises the possibility that the activation of mammalian motoneurons during locomotion may share some of the same rostrocaudally organized mechanisms that evolved to control swimming in fishes.  相似文献   

2.
Effective facilitation of the scratch reflex was observed in experiments on recently decerebrated and spinal cats in response to application of strychnine solution to the dorsal surface of the spinal cord. The receptive fields of the scratch reflex in this case depended on the segments to which the strychnine was applied. The receptive fields of a scratch reflex evoked by D-tubocurarine coincided with those of the intact adult animals, but the receptive fields for strychnine application were wider and corresponded to those of the scratch reflex in kittens [1, 10]. It is suggested that strychnine application abolishes the inhibition of the afferent inputs of the scratch reflex in the lower cervical segments of the spinal cord which has developed during ontogeny.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 622–625, November–December, 1978.  相似文献   

3.
The central nervous system of paralysed Xenopus laevis embryos can generate a motor output pattern suitable for swimming locomotion. By recording motor root activity in paralysed embryos with transected nervous systems we have shown that: (a) the spinal cord is capable of swimming pattern generation; (b) swimming pattern generator capability in the hindbrain and spinal cord is distributed; (c) caudal hindbrain is necessary for sustained swimming output after discrete stimulation. By recording similarly from embryos whose central nervous system was divided longitudinally into left and right sides, we have shown that: (a) each side can generate rhythmic motor output with cycle periods like those in swimming; (b) during this activity cycle period increases within an episode, and there is the usual rostrocaudal delay found in swimming; (c) this activity is influenced by sensory stimuli in the same way as swimming activity; (d) normal phase coupling of the left and right sides can be established by the ventral commissure in the spinal cord. We conclude that interactions between the antagonistic (left and right) motor systems are not necessary for swimming rhythm generation and present a model for swimming pattern generation where autonomous rhythm generators on each side of the nervous system drive the motoneurons. Alternation is achieved by reciprocal inhibition, and activity is initiated and maintained by tonic excitation from the hindbrain.  相似文献   

4.
J P Liu  E Laufer  T M Jessell 《Neuron》2001,32(6):997-1012
Subclasses of motor neurons are generated at different positions along the rostrocaudal axis of the spinal cord. One feature of the rostrocaudal organization of spinal motor neurons is a position-dependent expression of Hox genes, but little is known about how this aspect of motor neuron subtype identity is assigned. We have used the expression profile of Hox-c proteins to define the source and identity of patterning signals that impose motor neuron positional identity along the rostrocaudal axis of the spinal cord. We provide evidence that the convergent activities of FGFs, Gdf11, and retinoid signals originating from Hensen's node and paraxial mesoderm establish and refine the Hox-c positional identity of motor neurons in the developing spinal cord.  相似文献   

5.
Application of the glutamate agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate (AMPA, 5-10 microM), or N-methyl-D-aspartate (NMDA, 50-100 microM) to the turtle spinal cord produced fictive hindlimb motor patterns in low-spinal immobilized animals (in vivo) and in isolated spinal cord-hindlimb nerve preparations (in vitro). For in vivo experiments, drugs were applied onto the dorsal surface of 2-4 adjacent spinal cord segments in and near the anterior hindlimb enlargement. Motor output was recorded unilaterally or bilaterally from hindlimb muscle nerves. AMPA elicited vigorous motor patterns in vivo that included strict hip flexor-extensor and right-left alternation. In most turtles, the monoarticular knee extensor nerve FT-KE was active during the HE phase of AMPA evoked burst cycles, similar to the timing of pocket scratch motor patterns. NMDA was less effective in vivo, typically producing only weak and irregular bursting from hip nerves and little or no knee extensor (KE) discharge. Sensory stimulation of a rostral scratch reflex in vivo could reset an ongoing AMPA-evoked motor rhythm, indicating that cutaneous reflex pathways interact centrally with the chemically activated rhythm generator. Most in vitro preparations consisted of six segments of spinal cord, including the entire 5-segment hindlimb enlargement (D8-S2) and the segment immediately anterior to the enlargement (D7), with attached hindlimb nerves. In contrast to in vivo experiments, in vitro preparations exhibited highly regular, long-lasting motor rhythms when NMDA was superfused over the spinal cord. AMPA also produced rhythmic motor patterns in vitro, but these lasted only a few minutes before they were replaced with tonic discharge. FT-KE timing during in vitro chemically elicited activity was similar to that of sensory-evoked pocket scratch motor patterns. Some NMDA-evoked rhythmicity persisted even in 3-segment (D6-D8) and 1-segment (D8) in vitro preparations, demonstrating that neural mechanisms for chemically activated rhythmogenesis reside even in a single segment of the hindlimb enlargement.  相似文献   

6.
We reveal the intrinsic motor capacity of the spinal cord by examining motor behaviours produced by spinal segments caudal to a complete transection of the spinal cord. The turtle spinal cord generates three forms of the scratch reflex in the absence of neural inputs from supraspinal structures. Each form exhibits a characteristic motor neuron discharge pattern. We test the ability of the spinal cord to generate organized motor patterns in the absence of movement-related sensory feedback by examining motor neuron discharge patterns in spinal preparations that are immobilized with a neuromuscular blocking agent. The motor neuron discharge pattern associate with each form is observed in the spinal immobilized preparation. Each of these motor patterns is therefore generated centrally within the spinal cord.  相似文献   

7.
The life cycle of the lamprey includes a larval stage that can last for several years. The motor behavior of the larval lamprey, the ammocoete, has been only minimally studied and little is known of the neural correlates of that behavior. Comparison of known larval behavior to that of adults leaves unclear whether there are large or small changes in the spinal nervous system during transformation. The motor output of isolated larval and transforming spinal cords when stimulated to "swim" with D-glutamate has some differences from that of comparable adult preparations, but shares many important features with adults. Primarily, the fictive swimming is less well regulated and less stable than adults of the same species. We propose that a major difference in the structure and organization of the central pattern generator for locomotion between adults and ammocoetes is a relative lack or immaturity of some cell types that participate in the coordination of the segments and the generation of the rhythm of the periodic bursting.  相似文献   

8.
Swimming in vertebrates such as eel and lamprey involves the coordination of alternating left and right activity in each segment. Forward swimming is achieved by a lag between the onset of activity in consecutive segments rostrocaudally along the spinal cord. The intersegmental phase lag is approximately 1% of the cycle duration per segment and is independent of the swimming frequency. Since the lamprey has approximately 100 spinal segments, at any given time one wave of activity is propagated along the body. Most previous simulations of intersegmental coordination in the lamprey have treated the cord as a chain of coupled oscillators or well-defined segments. Here a network model without segmental boundaries is described which can produce coordinated activity with a phase lag. This ‘continuous’ pattern-generating network is composed of a column of 420 excitatory interneurons (E1 to E420) and 300 inhibitory interneurons (C1 to C300) on each half of the simulated spinal cord. The interneurons are distributed evenly along the simulated spinal cord, and their connectivity is chosen to reflect the behavior of the intact animal and what is known about the length and strength of the synaptic connections. For example, E100 connects to all interneurons between E51 and E149, but at varying synaptic strengths, while E101 connects to all interneurons between E52 and E150. This unsegmented E-C network generates a motor pattern that is sampled by output elements similar to motoneurons (M cells), which are arranged along the cell column so that they receive input from seven E and five C interneurons. The M cells thus represent the summed excitatory and inhibitory input at different points along the simulated spinal cord and can be regarded as representing the ventral root output to the myotomes along the spinal cord. E and C interneurons have five simulated compartments and Hodgkin-Huxley based dynamics. The simulated network produces rhythmic output over a wide range of frequencies (1–11 Hz) with a phase lag constant over most of the length, with the exception of the ‘cut’ ends due to reduced synaptic input. As the inhibitory C interneurons in the simulation have more extensive caudal than rostral projections, the output of the simulation has positive phase lags, as occurs in forward swimming. However, unlike the biological network, phase lags in the simulation increase significantly with burst frequency, from 0.5% to 2.3% over the range of frequencies of the simulation. Local rostral or caudal increases in excitatory drive in the simulated network are sufficient to produce motor patterns with increased or decreased phase lags, respectively. Received: 15 December 1995 / Accepted in revised form: 17 September 1996  相似文献   

9.
F W Beck  J R Sowers  D Sicca  B G Welch 《Life sciences》1985,36(25):2435-2444
This study evaluates dopaminergic regulation of aldosterone secretion in 6 patients with high spinal cord transections. Administration of the dopamine antagonist metoclopramide resulted in a marked rise in plasma aldosterone and 18-hydroxycorticosterone levels in 12 normal individuals, but no change in plasma levels of these zona glomerulosa corticosteroid products in spinal cord patients. Spinal cord transected patients also did not have the rise in plasma renin activity that was observed in normals following metoclopramide administration. Basal levels of aldosterone, 18 hydroxycorticosterone, corticosterone and renin activity as well as the aldosterone responses to graded dose infusion of adrenocorticotropin were similar in the spinal cord patients and the normals. These data suggest that dopaminergic regulation of adrenal zona glomerulosa corticosteroid and renal renin secretion is absent in patients with high spinal cord transections, suggesting that intact neural pathways from the central nervous system are necessary for metoclopramide stimulation of aldosterone and renin secretion in men. Since basal plasma aldosterone levels were normal in spinal cord transected patients, it appears that the absence of dopaminergic control does not result in elevated secretion.  相似文献   

10.
Hoxa10 and Hoxd10 coordinately regulate lumbar motor neuron patterning   总被引:1,自引:0,他引:1  
The paralogous Hox genes Hoxa10 and Hoxd10 are expressed in overlapping domains in the developing lumbar spinal cord and surrounding mesoderm. Independent inactivation of these two genes alters the trajectory of spinal nerves and decreases the complement of motor neurons present in the lumbar spinal cord, whereas dual inactivation of these two genes has been shown to alter peripheral nerve growth and development in the mouse hindlimb. We have examined the organization and distribution of lumbar motor neurons in the spinal cords of Hoxa10/Hoxd10 double mutant animals. Double mutant animals have decreased numbers of lumbar motor neurons in both the medial and lateral motor columns. The anteroposterior position of the lumbar motor column is shifted caudally in double mutant animals, and the distribution of motor neurons is altered across individual spinal segments. Distinctions between classes of motor neurons based on positional specificity appear disrupted in double mutants. Double mutants also demonstrate abnormal spinal cord vasculature and altered kidney placement and size. Our observations suggest that Hoxa10 and Hoxd10 activity is required to specify the position of the lumbar motor column and to provide segmental specification and identity for the lumbar motor neurons.  相似文献   

11.
R J Traub  M J Iadarola  M A Ruda 《Peptides》1989,10(5):979-983
Calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) was measured by radioimmunoassay in the cat lumbosacral dorsal spinal cord following unilateral dorsal rhizotomy of 5 consecutive dorsal roots. The dorsal rhizotomies greatly reduced but did not eliminate the CGRP-LI from the ipsilateral rhizotomized segments. The amount of CGRP-LI remaining in the rhizotomized segments was greatest in the most caudal segment (846 +/- 311 pmoles/g tissue) and decreased below 300 pmoles/g tissue in the remaining segments. When these values were compared to the intact contralateral side, the percent CGRP remaining ranged from 65% in the sacral segments to less than 20% in the lumbar segments. Rostral to the rhizotomized segments there was a gradual return of CGRP-LI to control levels within 3 segments. Small diameter primary afferent fibers are the only known source of CGRP within the dorsal spinal cord. These results suggest that the most likely origin of the CGRP that remained in the rhizotomized lumbar segments was the rostrally and caudally projecting branches of ipsilateral primary afferents that entered the spinal cord through intact dorsal roots caudal and rostral to the transected roots. These results support the hypothesis that small diameter primary afferents project several segments in the cat spinal cord.  相似文献   

12.
The purpose is to assess the importance of medullary mechanisms for the neurogenesis of eupnea. Cats that were used were decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated. Activities of the phrenic, facial, and mylohyoid nerves were monitored. Progressive caudal-to-rostral transections of the spinal cord and medulla were performed. Phrenic activity was eliminated by C1 spinal transections. Only modest changes in facial and mylohyoid activities resulted from transections as far rostral as the level of the dorsal respiratory nucleus. Rhythmic discharges ceased on transections at the pontomedullary junction. However, rhythmic mylohyoid discharges were maintained if protriptyline and strychnine were administered before and during the transection. In other studies rhythmic phrenic, facial, and mylohyoid discharges continued, albeit with an altered rhythm, after destruction of neurons in the dorsal respiratory nucleus by kainic acid. We conclude that caudal medullary mechanisms do not play an essential role in the neurogenesis of breathing movements. Rather, structures in rostral medulla and pons appear necessary for sustaining eupneic neural activities. The concept of multiple brain stem sites for ventilatory neurogenesis is discussed.  相似文献   

13.
Why are sensory signals and motor command signals combined in the neurons of origin of the spinocerebellar pathways and why are the granule cells that receive this input thresholded with respect to their spike output? In this paper, we synthesize a number of findings into a new hypothesis for how the spinocerebellar systems and the cerebellar cortex can interact to support coordination of our multi-segmented limbs and bodies. A central idea is that recombination of the signals available to the spinocerebellar neurons can be used to approximate a wide array of functions including the spatial and temporal dependencies between limb segments, i.e. information that is necessary in order to achieve coordination. We find that random recombination of sensory and motor signals is not a good strategy since, surprisingly, the number of granule cells severely limits the number of recombinations that can be represented within the cerebellum. Instead, we propose that the spinal circuitry provides useful recombinations, which can be described as linear projections through aspects of the multi-dimensional sensorimotor input space. Granule cells, potentially with the aid of differentiated thresholding from Golgi cells, enhance the utility of these projections by allowing the Purkinje cell to establish piecewise-linear approximations of non-linear functions. Our hypothesis provides a novel view on the function of the spinal circuitry and cerebellar granule layer, illustrating how the coordinating functions of the cerebellum can be crucially supported by the recombinations performed by the neurons of the spinocerebellar systems.  相似文献   

14.
Purification and characterization of the glycine receptor of pig spinal cord   总被引:13,自引:0,他引:13  
A large-scale purification procedure was developed to isolate the glycine receptor of pig spinal cord by affinity chromatography on aminostrychnine agarose. After an overall purification of about 10 000-fold, the glycine receptor preparations contained three major polypeptides of Mr 48 000, 58 000, and 93 000. Photoaffinity labeling with [3H]strychnine showed that the [3H]strychnine binding site is associated with the Mr 48 000 and, to a much lesser extent, the Mr 58 000 polypeptides. [3H]Strychnine binding to the purified receptor exhibited a dissociation constant KD of 13.8 nM and was inhibited by the agonists glycine, taurine, and beta-alanine. Gel filtration and sucrose gradient centrifugation gave a Stokes radius of 7.1 nm and an apparent sedimentation coefficient of 9.6 S. Peptide mapping of the [3H]strychnine-labeled Mr 48 000 polypeptides of purified pig and rat glycine receptor preparations showed that the strychnine binding region of this receptor subunit is highly conserved between these species. Also, three out of six monoclonal antibodies against the glycine receptor of rat spinal cord significantly cross-reacted with their corresponding polypeptides of the pig glycine receptor. These results show that the glycine receptor of pig spinal cord is very similar to the well-characterized rat receptor protein and can be purified in quantities sufficient for protein chemical analysis.  相似文献   

15.
The distribution of motoneurons in the lumbar spinal cord (spinal segments 8-10) of the clawed toad, Xenopus laevis, was studied with the horseradish peroxidase technique. In a total of 13 different hind limb muscles this tracer was applied in a slow-release gel. Motoneurons innervating a particular hind limb muscle were clustered in longitudinally arranged motor pools. Motor pools of different muscles did show considerable overlap both in the rostrocaudal and transverse plane. But, the various motor pools clearly show a somatotopic organization of motoneurons even in such a condensed lumbar spinal cord as in Xenopus laevis. Motoneurons innervating more distally positioned muscles are generally found in more caudal segments, while proximal muscles (with the exception of the m. adductor magnus) are supplied by motoneurons more or less throughout the lumbar enlargement. Flexor muscles usually are innervated by motoneurons situated ventrolaterally in the ventral horn, extensor muscles by dorsomedially found motoneurons. This pattern is particularly apparent for proximal (thigh) muscles, less so for more distal (shank and foot) muscles. The present data are in keeping with those obtained with the retrograde cell degeneration technique in ranid frogs and are consistent with observations in other tetrapods, although a more clear separation of motor pools is evident in "higher" vertebrates such as birds and mammals.  相似文献   

16.
The link between extrinsic signaling, progenitor cell specification and neuronal subtype identity is central to the developmental organization of the vertebrate central nervous system. In the hindbrain and spinal cord, distinctions in the rostrocaudal identity of progenitor cells are associated with the generation of different motor neuron subtypes. Two fundamental classes of motor neurons, those with dorsal (dMN) and ventral (vMN) exit points, are generated over largely non-overlapping rostrocaudal domains of the caudal neural tube. Cdx and Hox genes are important determinants of the rostrocaudal identity of neural progenitor cells, but the link between early patterning signals, neural Cdx and Hox gene expression, and the generation of dMN and vMN subtypes, is unclear. Using an in vitro assay of neural differentiation, we provide evidence that an early Wnt-based program is required to interact with a later retinoic acid- and fibroblast growth factor-mediated mechanism to generate a pattern of Cdx and Hox profiles characteristic of hindbrain and spinal cord progenitor cells that prefigure the generation of vMNs and dMNs.  相似文献   

17.
A comparative HRP study of formation of connections between primary sensory nerve fibers and motoneurones in brachial and lumbosacral cord segments has been made on chick embryos between the 6.5th and 10th days of incubation. HRP was applied to the cut ends of the appropriate nerves via suction pipettes on isolated superfused spinal cord preparation. The first contacts between primary sensory collaterals and motoneuronal dendrites were found to appear both in lumbosacral and branchial cord segments at the same stage, i.e. at the 7.5-8th days of development. This observation does not confirm the widely accepted belief on rostrocaudal sequence of development of the spinal cord, indicating that exceptions from this developmental gradient are quite possible.  相似文献   

18.
Antri M  Mellen N  Cazalets JR 《PloS one》2011,6(6):e20529
Although the mammalian locomotor CPG has been localized to the lumbar spinal cord, the functional-anatomical organization of flexor and extensor interneurons has not been characterized. Here, we tested the hypothesis that flexor and extensor interneuronal networks for walking are physically segregated in the lumbar spinal cord. For this purpose, we performed optical recordings and lesion experiments from a horizontally sectioned lumbar spinal cord isolated from neonate rats. This ventral hemi spinal cord preparation produces well-organized fictive locomotion when superfused with 5-HT/NMDA. The dorsal surface of the preparation was visualized using the Ca(2+) indicator fluo-4 AM, while simultaneously monitoring motor output at ventral roots L2 and L5. Using calcium imaging, we provided a general mapping view of the interneurons that maintained a stable phase relationship with motor output. We showed that the dorsal surface of L1 segment contains a higher density of locomotor rhythmic cells than the other segments. Moreover, L1 segment lesioning induced the most important changes in the locomotor activity in comparison with lesions at the T13 or L2 segments. However, no lesions led to selective disruption of either flexor or extensor output. In addition, this study found no evidence of functional parcellation of locomotor interneurons into flexor and extensor pools at the dorsal-ventral midline of the lumbar spinal cord of the rat.  相似文献   

19.
20.
In the regenerating newt tail, epimorphic regeneration--which recapitulates morphologically normal embryonic development--proceeds along a rostrocaudal differentiation gradient. Innervation of the new myomeres results from the spinal roots of segments rostral to the amputation plane and from ventral roots emerging from the lateroventral region of the regenerating spinal cord, in which motor neurons are differentiating. Electron microscopy and an indirect immunofluorescence study with anti-glial fibrillary acid protein (GFAP) confirm that the ventrolateral part of the regenerated ependymal tube gives rise to cells of the ventral root sheath and the spinal ganglia. Anti-GFAP and anti-neurofilament antibodies showed that ependymoglial cells and Schwann cells may play a role in neuronal pathfinding by helping guide and stabilize pioneering axons as they extend toward the myomeres. The carbohydrate epitope NC-1 is expressed in the spinal cord, in sheath cells of the spinal ganglia and in the non-myelin-forming Schwann cells of the peripheral nervous system. L1, a Ca++ independent neural cell adhesion molecule, was detected in the axonal compartments of the regenerating spinal cord, on immature and/or non-myelin-forming Schwann cells within the peripheral nervous system (PNS), and on nerve fibers within the regenerate. These immunohistochemical observations collectively support the hypothesis that Schwann cells already present in the blastema could be involved in organizing neural pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号