首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Rhizobium leguminosarum bv. trifolii produces an acidic exopolysaccharide (EPS) that is important for the induction of nitrogen-fixing nodules on clover. Recently, three genes, pssN, pssO, and pssP, possibly involved in EPS biosynthesis and polymerization were identified. The predicted protein product of the pssP gene shows a significant sequence similarity to other proteins belonging to the PCP2a family that are involved in the synthesis of high-molecular-weight EPS. An R. leguminosarum bv. trifolii TA1 mutant with the entire coding region of pssP deleted did not produce the EPS. A pssP mutant with the 5' end of the gene disrupted produced exclusively low-molecular-weight EPS. A mutant that synthesized a functional N-terminal periplasmic domain but lacked the C-terminal part of PssP produced significantly reduced amounts of EPS with a slightly changed low to high molecular form ratio. Mutants affected in the PssP protein carrying a stable plasmid with a constitutively expressed gusA gene induced nodules on red clover that were not fully occupied by bacteria. A mutant with the entire pssP gene deleted infected only a few plant cells in the nodule. The pssP promoter-gusA reporter fusion was active in bacteroids during nodule development.  相似文献   

2.
Marczak M  Mazur A  Gruszecki WI  Skorupska A 《Biochimie》2008,90(11-12):1781-1790
Synthesis and secretion of polysaccharides by Gram-negative bacteria are a result of a concerted action of enzymatic and channel-forming proteins localized in different compartments of the cell. The presented work comprises functional characterization of PssO protein encoded within the previously identified, chromosomal exopolysaccharide (EPS) biosynthesis region (Pss-I) of symbiotic bacterium Rhizobium leguminosarum bv. trifolii TA1 (RtTA1). pssO gene localization between pssN and pssP genes encoding proteins engaged in exopolysaccharide synthesis and transport, suggested its role in EPS synthesis and/or secretion. RtTA1 pssO deletion mutant and the PssO protein overproducing strains were constructed. The mutant strain was EPS-deficient, however, this mutation was not complemented. The PssO-overproducing strain was characterized by increase in EPS secretion. Subcellular fractionation, pssO-phoA/lacZ translational fusion analyses and immunolocalisation of PssO on RtTA1 cell surface by electron microscopy demonstrated that PssO is secreted to the extracellular medium and remains attached to the cell. Western blotting analysis revealed the presence of immunologically related proteins within the species R. leguminosarum bv. trifolii, bv. viciae and Rhizobium etli. The secondary structure of PssO-His(6), as determined by FTIR spectroscopy, consists of at least 32% alpha-helical and 12% beta-sheet structures. A putative function of PssO in EPS synthesis and/or transport is discussed in the context of its cellular localization and the phenotypes of the deletion mutant and pssO-overexpressing strain.  相似文献   

3.
The prsDE genes encode a type I protein secretion system required for the secretion of the nodulation protein NodO and at least three other proteins from Rhizobium leguminosarum bv. viciae. At least one of these proteins was predicted to be a glycanase involved in processing of bacterial exopolysaccharide (EPS). Two strongly homologous genes (plyA and plyB) were identified as encoding secreted proteins with polysaccharide degradation activity. Both PlyA and PlyB degrade EPS and carboxymethyl cellulose (CMC), and these extracellular activities are absent in a prsD (protein secretion) mutant. The plyA gene is upstream of prsD but appears to be expressed at a very low level (if at all) in cultured bacteria. A plyB::Tn5 mutant has a very large reduction in degradation of EPS and CMC. Cultures of plyB mutants contained an increased ratio of EPS repeat units to reducing ends, indicating that the EPS was present in a longer-chain form, and this correlated with a significant increase in culture viscosity. Thus, PlyB may play a role in processing of EPS. Analysis of the symbiotic properties of a plyA plyB double mutant revealed that these genes are not required for symbiotic nitrogen fixation and that nodulation was not significantly affected. PlyA and PlyB are similar to bacterial and fungal polysaccharide lyases; they contain 10 copies of what we propose as a novel heptapeptide repeat motif that may constitute a fold similar to that found in the family of extracellular pectate lyases. PlyA and PlyB lack the Ca2+-binding RTX nonapeptide repeat motifs usually found in proteins secreted via type I systems. We propose that PlyA and PlyB are members of a new family of proteins secreted via type I secretion systems and that they are involved in processing of EPS.  相似文献   

4.
5.
Summary A Tn5-induced mutant strain of R. phaseoli which failed to synthesize exopolysaccharide (EPS) was isolated and was shown to induce normal nitrogen-fixing nodules on Phaseolus beans, the host of this Rhizobium species. The corresponding wild-type Rhizobium DNA was cloned in a wide host-range vector and by isolating Tn5 insertions in this cloned DNA, mutations in a gene termed pss (polysaccharide synthesis) were isolated. These were introduced by marker exchange into near-isogenic strains of R. leguminosarum and R. phaseoli which differed only in the identity of their symbiotic plasmids. Whereas the EPS-deficient mutant strain of R. phaseoli induced normal nitrogen-fixing nodules on Phaseolus beans, the same mutation prevented nodulation of peas by a strain of R. leguminosarum which normally nodulates this host. Further, it was found that DNA cloned from the plant pathogen Xanthomonas campestris pathover campestris could correct the defect in EPS synthesis in R. leguminosarum and R. phaseoli and also restored the ability to nodulate peas to the pss::Tn5 mutant strain of R. leguminosarum.  相似文献   

6.
The surface polysaccharides of Rhizobium leguminosarum 128C53 smrrifr (parent) and its exo−1 mutant were isolated and characterized. The parent carries out normal symbiosis with its host, pea, while the exo−1 mutant does not nodulate the pea. The following observations were made. (a) The parent produces lipopolysaccharide (LPS), typical acidic extracellular polysaccharide (EPS), and three additional polysaccharides, PS1, PS2, and PS3. The PS1 and PS2 fractions are likely to be the capsular polysaccharide (CPS) and are identical in composition to the EPS. The PS3 fraction is a small-molecular-weight glucan. (b) The exo−1 mutant produces LPS, EPS, and a PS3 fraction, but does not produce significant amounts of either PS1 or PS2. The LPS from the exo−1 mutant appears to be identical to the parental LPS. Analysis of the EPS from exo−1 shows that it consists of two polysaccharides. One polysaccharide is identical to the LPS and comprises 70% of the exo−1 EPS. The second polysaccharide is identical to the exo−1 PS3 and comprises 30% of the exo−1 EPS. This result shows that the exo−1 mutant does not produce any of the typical acidic parental EPS and that the major polysaccharide released into the media by the exo−1 mutant is intact LPS. The exo−1 mutant PS3 fraction was found to contain two polysaccharides, PS3-1 and PS3-2. The PS3-2 polysaccharide is identical to the parental PS3 described above. The PS3-1 polysaccharide has a composition similar to the polysaccharide portion of the LPS. This result suggests that the exo−1 mutant produces LPS polysaccharide fragments. These LPS polysaccharide fragments are not produced by the parent strain.  相似文献   

7.
8.
Rhizobium leguminosarum has two high‐affinity Mn2+ transport systems encoded by sitABCD and mntH. In symbiosis, sitABCD and mntH were expressed throughout nodules and also strongly induced in Mn2+‐limited cultures of free‐living cells. Growth of a sitA mntH double mutant was severely reduced under Mn2+ limitation and sitA and mntH single mutants were more sensitive to oxidative stress. The double sitA mntH mutant of R. leguminosarum was unable to fix nitrogen (Fix) with legumes belonging to the galegoid clade (Pisum sativum, Vicia faba and Vicia hirsuta). The presence of infection thread‐like structures and sparsely‐packed plant cells in nodules suggest that bacteroid development was blocked, either at a late stage of infection thread progression or during bacteroid‐release. In contrast, a double sitA mntH mutant was Fix+ on common bean (Phaseoli vulgaris), a member of the phaseoloid clade of legumes, indicating a host‐specific symbiotic requirement for Mn2+ transport.  相似文献   

9.
Karr DB  Liang RT  Reuhs BL  Emerich DW 《Planta》2000,211(2):218-226
 The exact mechanism(s) of infection and symbiotic development between rhizobia and legumes is not yet known, but changes in rhizobial exopolysaccharides (EPSs) affect both infection and nodule development of the legume host. Early events in the symbiotic process between Bradyrhizobium japonicum and soybean (Glycinemax [L.] Merr.) were studied using two mutants, defective in soybean lectin (SBL) binding, which had been generated from B. japonicum 2143 (USDA 3I-1b-143 derivative) by Tn5 mutagenesis. In addition to their SBL-binding deficiency, these mutants produced less EPS than the parental strain. The composition of EPS varied with the genotype and with the carbon source used for growth. When grown on arabinose, gluconate, or mannitol, the wild-type parental strain, B. japonicum 2143, produced EPS typical of DNA homology group I Bradyrhizobium, designated EPS I. When grown on malate, strain 2143 produced a different EPS composed only of galactose and its acetylated derivative and designated EPS II. Mutant 1252 produced EPS II when grown on arabinose or malate, but when grown on gluconate or mannitol, mutant 1252 produced a different EPS comprised of glucose, galactose, xylose and glucuronic acid (1:5:1:1) and designated EPS III. Mutant 1251, grown on any of these carbon sources, produced EPS III. The EPS of strain 2143 and mutant 1252 contained SBL-binding polysaccharide. The amount of the SBL-binding polysaccharide produced by mutant 1252 varied with the carbon source used for growth. The capsular polysaccharide (CPS) produced by strain 2143 during growth on arabinose, gluconate or mannitol, showed a high level of SBL binding, whereas CPS produced during growth of strain 2143 on malate showed a low level of SBL binding. However, the change in EPS composition and SBL binding of strain 2143 grown on malate did not affect the wild-type nodulation and nitrogen fixation phenotype of 2143. Mutant 1251, which produced EPS III, nodulated 2 d later than parental strain 2143, but formed effective, nitrogen-fixing tap root nodules. Mutant 1252, which produced either EPS II or III, however nodulated 5–6 d later and formed few and ineffective tap root nodules. Restoration of EPS I production in mutant 1252 correlated with restored SBL binding, but not with wild-type nodulation and nitrogen fixation. Received: 6 October 1999 / Accepted: 18 November 1999  相似文献   

10.

Aims

The aim of this study was investigation of the response of R. leguminosarum bv. trifolii wild-type and its two rosR and pssA mutant strains impaired in exopolysaccharide (EPS) synthesis to oxidative stress conditions caused by two prooxidants: a superoxide anion generator- menadione (MQ) and hydrogen peroxide (H2O2).

Methods

The levels of enzymatic (catalase, superoxide dismutase, pectinase and β-glucosidase) and non-enzymatic (superoxide anion generator, formaldehyde, phenolic compounds) biomarkers were monitored using biochemical methods in both the supernatants and rhizobial cells after treatment with 0.3?mM MQ and 1.5?mM H2O2. The viability of bacterial cells was estimated using fluorescent dyes and confocal laser scanning microscopy. In addition, the effect of prooxidants on symbiosis of the R. leguminosarum bv. trifolii strains with clover was established.

Results

The tested stress factors significantly changed enzymatic patterns of the rhizobial strains, and the wild-type strain proved to be more resistant to these prooxidants than both pssA and rosR mutants. Significantly higher activities of both catalase and superoxide dismutase have been detected in these mutants in comparison to the wild-type strain. H2O2 and MQ also increased the levels of pectinase and β-glucosidase activities in the tested strains. Moreover, pre-incubation of R. leguminosarum bv. trifolii strains with the prooxidants negatively affected the viability of bacterial cells and the number of nodules elicited on clover plants.

Conclusions

EPS produced in large amounts by R. leguminosarum bv. trifolii plays a significant protective role as a barrier against oxidative stress factors and during symbiotic interactions with clover plants.  相似文献   

11.
12.
Two-component signal transduction systems (TCS) are a main strategy used by bacteria to sense and adapt to changes in their environment. In the legume symbiont Rhizobium leguminosarum biovar viciae VF39, mutation of chvG, a histidine kinase, caused a number of pleiotropic phenotypes. ChvG mutants are unable to grow on proline, glutamate, histidine, or arginine as the sole carbon source. The chvG mutant secreted smaller amounts of acidic and neutral surface polysaccharides and accumulated abnormally large amounts of poly-ß-hydroxybutyrate. Mutation of chvG caused symbiotic defects on peas, lentils, and vetch; nodules formed by the chvG mutant were small and white and contained only a few cells that had failed to differentiate into bacteroids. Mutation of chvG also destabilized the outer membrane of R. leguminosarum, resulting in increased sensitivity to membrane stressors. Constitutive expression of ropB, the outer membrane protein-encoding gene, restored membrane stability and rescued the sensitivity phenotypes described above. Similar phenotypes have been described for mutations in other ChvG-regulated genes encoding a conserved operon of unknown function and in the fabXL genes required for synthesis of the lipid A very-long-chain fatty acid, suggesting that ChvG is a key component of the envelope stress response in Rhizobium leguminosarum. Collectively, the results of this study demonstrate the important and unique role the ChvG/ChvI TCS plays in the physiology, metabolism, and symbiotic competency of R. leguminosarum.  相似文献   

13.
14.
Phase variation in the Gram-negative human pathogen Vibrio vulnificus involves three colonial morphotypes- smooth opaque colonies due to production of capsular polysaccharide (CPS), smooth translucent colonies as the result of little or no CPS expression, and rugose colonies due to production of a separate extracellular polysaccharide (EPS), which greatly enhances biofilm formation. Previously, it was shown that the brp locus, which consists of nine genes arranged as an operon, is up-regulated in rugose strains in a c-di-GMP-dependent manner, and that plasmid insertions into the locus resulted in loss of rugosity and efficient biofilm production. Here, we have used non-polar mutagenesis to assess the involvement of individual brp genes in production of EPS and related phenotypes. Inactivation of genes predicted to be involved in various stages of EPS biosynthesis eliminated both the rugose colonial appearance and production of EPS, while knockout of a predicted flippase function involved in EPS transport resulted in a dry, lightly striated phenotype, which was associated with a reduction of brp-encoded EPS on the cell surface. All brp mutants retained the reduced motility characteristic of rugose strains. Lastly, we provide evidence that the brp locus is highly prevalent among strains of V. vulnificus.  相似文献   

15.
Rhizobium leguminosarum bv. trifolii T24 is ineffective in symbiotic nitrogen fixation, produces a potent antibiotic (referred to here as trifolitoxin) that is bacteriostatic to certain Rhizobium strains, and is very competitive for clover root nodulation (EA Schwinghamer, RP Belkengren 1968 Arch Mikrobiol 64: 130-145). The primary objective of this work was to demonstrate the roles of nodulation and trifolitoxin production in the expression of nodulation competitiveness by T24. Unlike wildtype T24, transposon mutants of T24 lacking trifolitoxin production were unable to decrease clover nodulation by an effective, trifolitoxin-sensitive strain of R. leguminosarum bv. trifolii. A non-nodulating transposon mutant of T24 prevented clover nodulation by a trifolitoxin-sensitive R. leguminosarum bv. trifolii when co-inoculated with a T24 mutant lacking trifolitoxin production. Neither mutant alone prevented nodulation by the trifolitoxin-sensitive strain. These results demonstrate that trifolitoxin production and nodulation are required for the expression of nodulation competitiveness by strain T24. A trifolitoxin-sensitive strain of R. meliloti did not nodulate alfalfa when co-inoculated with T24 and a trifolitoxin-resistant strain of R. meliloti. Thus, a trifolitoxin-producing strain was useful in regulating nodule occupancy on a legume host other than clover. Trifolitoxin production was constitutive in both minimal and enriched media. Trifolitoxin was found to inhibit the growth of 95% of all strains of R. leguminosarum bvs. trifolii, viceae, and phaseoli tested. Strains of all 13 biotypes of R. leguminosarum bv. trifolii were inhibited by trifolitoxin. Three strains of R. fredii were also inhibited. Strain T24 ineffectively nodulated 46 clover species, did not nodulate Trifolium ambiguum, and induced partially effective nodules on Trifolium micranthum. Since T24 produced partially effective nodules on T. micranthum and since a trifolitoxin-minus mutant of T24 induced ineffective nodules, trifolitoxin production is not the cause of the symbiotic ineffectiveness of T24.  相似文献   

16.
The influence of growth rate and medium composition on exopolymer production byRhizobium leguminosarum was studied. When grown in medium containing 10g/l mannitol and 1g/l glutamic acid,Rhizobium leguminosarum biovartrifolii TA-1 synthesized up to 2.0g/l of extracellular polysaccharide (EPS), and up to 1.6g/l of capsular polysaccharide (CPS). Under non-growing cell conditions in medium without glutamic acid, CPS synthesis by strain TA-1 could proceed to 2.1g/l, while EPS-production remained relatively low (0.8g/l). Maximal CPS-yield was 2.9g CPS/l medium in a medium containing 20g/l mannitol and 2g/l glutamic acid. TheEPS-deficient strain R. leguminosarum RBL5515,exo4::Tn5 was able to produce CPS to similar levels as strain TA-1, but CPS-recovery was easier because of the low viscosity of the medium and growth of the cells in pellets. With strain TA-1 in nitrogen-limited continuous cultures with a constant biomass of 500mg cell protein/l, EPS was the most abundant polysaccharide present at every dilution rate D (between 0.12 and 0.02 h–1). The production rates were 50–100mg/g protein/h for EPS and 15–20mg/g protein/h for CPS. Only low amounts of cyclic -(1,2)-glucans were excreted (10–30 mg/l) over the entire range of growth rates.Abbreviations bv biovar - CPS capsular polysaccharide - EPS extracellular polysaccharide - HMr high molecular mass - LMr low molecular mass - YEMCR Yeast Extract-Mannitol-Congo Red agar  相似文献   

17.
Exopolysaccharides (EPS) of nodulating strains of Rhizobium trifolii and Rhizobium leguminosarum added to red clover seedlings before inoculation reduced the number of nodules. The inhibition of the nodulation was correlated with the amount of EPS. The preparations of EPS from mutants defective in early stages of nodulation (Roa- or Hac-) did not affect the nodulation, whereas EPS from mutants deficient in late stages (post Hac-) exerted an inhibitory effect.Inactive preparation of EPS contained less O-acetyl groups and pyruvic acid residues. Deacetylation and depyruvylation of EPS from R. trifolii Nod+ abolished it inhibitory effect. It was concluded that noncarbohydrate substitutions (acetate, pyruvate) are involved in EPS effect.Abbreviations CPS capsular polysaccharide - EPS exopolysaccharide - LPS lipopolysaccharide - Nod nodulation - Fix nitrogen fixation - Hac root hairs curling - Roa root adhesion  相似文献   

18.
Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca2+ in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca2+-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-type Medicago truncatula (line J5) compared to the mycorrhiza-defective mutant dmi3/Mtsym13. Symbiotic fungal activity was monitored using stearoyl-CoA desaturase and phosphate transporter genes. Laser microdissection based-mapping of fungal gene expression in mycorrhizal root tissues indicated that the Ca2+-related genes were differentially upregulated in arbuscules and/or in intercellular hyphae. The spatio-temporal variations in gene expression suggest that the encoded proteins may have different functions in fungal development or function during symbiosis development. Full-length cDNA obtained for two genes with interesting expression profiles confirmed a close similarity with an endoplasmic reticulum P-type ATPase and a Vcx1-like vacuolar Ca2+ ion transporter functionally characterized in other fungi and involved in the regulation of cell calcium pools. Possible mechanisms are discussed in which Ca2+-related proteins G. intraradices BEG141 may play a role in mobilization and perception of the intracellular messenger by the AM fungus during symbiotic interactions with host roots.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号