首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.  相似文献   

2.
A new series of diverse isoxazoles and triazoles linked 6-hydroxycoumarin (1) were synthesized using click chemistry approach. All the derivatives were subjected to 3-(4,5-dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) cytotoxicity screening against a panel of five different human cancer cell lines viz. prostate (PC-3), colon (HCT-116 and Colo-205), leukemia (HL-60) and lung (A-549) to check their cytotoxic potential. Interestingly, among the tested molecules, some of the analogs displayed better cytotoxic activity than the parent 6-hydroxycoumarin (1). Of the synthesized isoxazoles, compounds 10 and 13 showed the best activity with IC50 of 8.2 and 13.6 μM against PC-3 cancer cell line, while as, among the triazoles, compounds 23 and 25 were the most active with the IC50 of 10.2 and 12.6 μM against A-549 cancer cell line. The other derivatives showed almost comparable activity with that of the parent molecule. The present study resulted in identification of ortho substituted isoxazole and triazole derivatives of 6-hydroxycoumarin as effective cytotoxic agents against prostate (PC-3) and lung (A-549) cancer cell lines, respectively.  相似文献   

3.
The new derivatives based on (Z)-3-(arylamino)-1-(3-phenylimidazo[1,5-a]pyridin-1-yl)prop-2-en-1-one scaffold was synthesized and evaluated for their in vitro cytotoxic potential against a panel of cancer cell lines, viz., A549 (human lung cancer), HCT-116 (human colorectal cancer), B16F10 (murine melanoma cancer), BT-474 (human breast cancer), and MDA-MB-231 (human triple-negative breast cancer). Among them, many of the synthesized compounds exhibited promising cytotoxic potential against the panel of tested cancer cell lines with IC50 <30 µM. Based on the preliminary screening results, the structure-activity relationship (SAR) of the compounds was established. Among the synthesized compounds, 15i displayed a potential anti-proliferative activity against HCT-116 cancer cell line with an IC50 value of 1.21 ± 0.14 µM. Flow cytometric analysis revealed that compound 15i arrested the G0/G1 phase of the cell cycle. Moreover, increased reactive oxygen species (ROS) generation, clonogenic assay, acridine orange staining, DAPI nuclear staining, measurement of mitochondrial membrane potential (ΔΨm), and annexin V-FITC assays revealed that compound 15i promoted cell death through apoptosis.  相似文献   

4.
A series of novel 3-benzylcoumarin-imidazolium salts were prepared and evaluated in vitro against a panel of human tumor cell lines. The results showed that the existence of 5,6-dimethyl-benzimidazole ring and substitution of the imidazolyl-3-position with a naphthylacyl group were vital for modulating cytotoxic activity. Notably, compound 38 was found to be the most potent derivative with IC50 values of 2.04–4.51 μM against five human tumor cell lines, while compound 34 were more selective to SW-480 cell lines with IC50 value 40.0-fold lower than DDP. Mechanism of action studies indicated that compound 38 can cause the G0/G1 phase cell cycle arrest and apoptosis in SMMC-7721 cell lines.  相似文献   

5.
Zanthoxylum planispinum Sieb. et Zucc is used in traditional oriental medicinal for preventing toothache, treating colds and expelling roundworms. Its fruit is widely used as a spice in cuisines in East Asian countries. Two previously unreported dilignans with a rare α,β-unsaturated ketone group, bizanthplanispine A and B (1–2), together with two known dilignans, zanthpodocarpins A and B (3–4), and four known lignans, fargesin (5), planispine A (6), pinoresinol-di-3,3-dimethylallyl (7), and eudesmin (8), were isolated from the roots of Z. planispinum. The structures of these compounds were elucidated by extensive NMR and MS analysis. The cytotoxic activity of the isolated compounds was evaluated on three human cancer cell lines. Compounds 1–4 significantly reduced the proliferation of Hela with IC50 values ranging from 15.00 to 26.44 μg/mL. Furthermore, compound 6 showed the strongest inhibitory effect on the growth of HL-60 and PC-3 with IC50 values of 4.90 and 23.45 μg/mL, respectively. These data suggested that compounds 1–4, and 6 from Z. planispinum have potential as anticancer substances.  相似文献   

6.
A series of 2-alkylaminomethyl jaspine B analogues were synthesized and evaluated for their cytotoxic effects on human lung adenocarcinoma, breast cancer, and prostate cancer cell lines and a mouse melanoma cell line. Most of the compounds exhibited moderate to good activity against the cancer cell lines. Compound 7f showed the best overall cytotoxicity on PC-3 cells (IC50?=?0.85?μM). Further mechanistic studies revealed that compound 7f induced marked changes in PC-3 cell morphology, disrupted the mitochondrial membrane potential, and increased expression of the autophagy proteins beclin-1, LC3, and P62.  相似文献   

7.
A series of new 1,2,3-triazolo-phenanthrene hybrids has been synthesized by employing Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. These compounds were evaluated for their in vitro cytotoxic potential against various human cancer cell lines viz. lung (A549), prostate (PC-3 and DU145), gastric (HGC-27), cervical (HeLa), triple negative breast (MDA-MB-231, MDA-MB-453) and breast (BT-549, 4T1) cells. Among the tested compounds, 7d displayed highest cytotoxicity against DU145 cells with IC50 value of 1.5 ± 0.09 µM. Further, the cell cycle analysis shown that it blocks G0/G1 phase of the cell cycle in a dose dependent manner. In order to determine the effect of compound on cell viability, phase contrast microscopy, AO/EB, DAPI, DCFDA and JC-1 staining studies were performed. These studies clearly indicated that the compound 7d inhibited the cell proliferation of DU145 cells. Relative viscosity measurements and molecular docking studies indicated that these compounds bind to DNA by intercalation.  相似文献   

8.
Fractionation guided by the cytotoxic activity of the methanolic extract of Veronica americana led to the isolation of two new iridoids identified as 4β-hydroxy-6-O-(p-hydroxybenzoyl)-tetrahydrolinaride (1) and 10-O-protocatechuyl-catalpol (2), together with four known aromatic acids, veratric acid (3) p-methoxybenzoic acid (4), p-hydroxybenzoic acid (5) and protocatechuic acid (6). The structure of these compounds was determined by spectroscopic analysis. Iridoid glycosides 1 and 2 showed selective cytotoxic activity against the human cancer cell lines HF-6 (IC50 = 0.031 and 0.066 μM, respectively) and PC-3 (IC50 = 0.721 and 0.801 μM, respectively), with less sensitivity in normal MRC-5 cells (IC50 = 77.103 and 1451.562 μM, respectively). Compound 1 was 9.9 times more potent than camptothecin against HF-6 cell line, while compound 2 was 4.7 times, more potent, against the same cell line, than camptothecin. The found biological efficacy of 1 and 2 allow us to propose these compounds as candidates for the development of effective anticancer therapeutic agents.  相似文献   

9.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

10.
Two previously unreported spirostanol saponins, dianchonglouosides A and B (1 and 2), along with 7 known steroidal saponins (39) were isolated from the rhizomes of Paris polyphylla var. yunnanensis. Their structures were elucidated by extensive spectroscopic analysis (MS, 1D, and 2D NMR), and chemical methods. The cytotoxic activities of the isolated compounds 19 were also evaluated against two human cancer cell lines (HEK293 and HepG2). The results showed that compound 7 had the strongest cytotoxic activity against the two cancer cell lines with the IC50 values of 0.6 and 0.9 μM, respectively.  相似文献   

11.
12.
Two new glycoalkaloids, erianosides A (1) and B (2) along with five known compounds (37) were isolated from the leaves of Solanum erianthum. Their structures were elucidated from analyses of spectroscopic data and all isolates were tested for in vitro cytotoxic activity against human breast cancer cell lines (BT-549, MDA-MB-231, T74D, and MCF-7). Solasonine (5) and solamargine (6) were active against the aforementioned four cancer cell lines with IC50 values of 27.26–35.89 and 5.84–10.13 μM, respectively. Erianoside A (1) (T74D: IC50, 56.39 µM) and solasodine (3) (BT-549 and MDA-MB-231: IC50, 59.15 and 75.63 µM, respectively) had moderate cytotoxic effects towards some cell lines in the panel.  相似文献   

13.
A new series of 1H- and 2H-pyrazole derivatives (35 final compounds) has been designed and synthesized in this study. A selected group (13 compounds) was then tested over a panel of 60 cancer cell lines at a single dose concentration of 10 μM. At this concentration, six compounds have showed moderate to strong mean inhibitions, and were further tested at five-dose testing mode to determine their IC50 over the 60 cell lines. The IC50 values of the tested compounds indicated high potency (as for compound 10f) as well as high efficacy (as for compound 11e). Accordingly, compound 10f was then tested at a single dose concentration of 10 μM over a panel of 54 kinases to determine its kinase inhibitory profile. The compound has showed good selectivity towards FLT3 kinase, associated with a moderate potency, with an IC50 value of 1.74 μM.  相似文献   

14.
Several pyrrolo[2,3-b]pyridine-based B-RAF inhibitors are well known and some of them are currently FDA approved as anticancer agents. Based on the structure of these FDA approved V600EB-RAF inhibitors, two series of pyrrolo[2,3-b]pyridine scaffold were designed and synthesized in attempt to develop new potent V600EB-RAF inhibitors. The 38 synthesized compounds were biologically evaluated for their V600EB-RAF inhibitory effect at single dose (10 μM). Compounds with high percent inhibition were tested to determine their IC50 over V600EB-RAF. Compounds 34e and 35 showed the highest inhibitory effect with IC50 values of 0.085 µM and 0.080 µM, respectively. Headed for excessive biological evaluation, the synthesized derivatives were tested over sixty diverse human cancer cell lines. Only compound 35 emerged as a potent cytotoxic agent against different panel of human cancer cell lines.  相似文献   

15.
A series of novel bisbenzofuran-imidazolium salts were designed and prepared. The in vitro antitumor activity of these derivatives was evaluated against a panel of human tumor cell lines (A549, HL-60, MCF-7, SMMC-7721 and SW480). Results demonstrated that 2-methyl-benzimidazole ring and substitution of the imidazolyl-3-position with a 4-methoxyphenacyl or 2-naphthylacyl substituent were important for promoting cytotoxic activity. Notably, compound 23 was found to be the most potent compound with IC50 values of 0.64–1.47 μM against five human tumor cell lines, and exhibited higher selectivity to MCF-7 and SW-480 cell lines with IC50 values 15.3-fold and 9.1-fold lower than DDP.  相似文献   

16.
Three new chlorinated phenolic glycosides, namely przewatangosides A-C (1-3), along with one known compound, globosumoside A (4), were isolated from the whole plants of Przewalskia tangutica. Their structures were unequivocally determined by extensive spectroscopic analysis and chemical method. The cytotoxic activities of the isolated phenolic glycosides (1-4) were evaluated against the five human cancer cell lines A549, MCF-7, SMMC-7721, HepG2 and HL-60. Przewatangoside A (1) exhibited weak cytotoxicity against SMMC-7721 with the IC50 value of 38.1 μM. All the tested compounds were inactive (IC50 > 50 μM) to the normal human hepatocyte cell line (L02).  相似文献   

17.
New series of triazolo[4,3-c]quinazolines were designed, synthesized and their structures were elucidated using different spectroscopic techniques. They were evaluated for their in vitro antitumor activity against HepG2, MCF-7, PC-3, HCT-116 and HeLa cancer cell lines using MTT assay. It was found that all compounds showed variable in vitro cytotoxicity. Distinct derivatives exhibited higher inhibitory activity against the tested cell lines with IC50 values ranging from 8.27 to 10.68 µM using DOX standard (IC50 = 4.17–8.87 µM). In vitro epidermal growth factor receptor (EGFR) inhibition assay was performed. Results revealed that compounds 8, 19 and 21 exhibited worthy EGFR inhibitory activity with IC50 values ranging from 0.69 to1.8 µM in comparison to the reference drug Gefitinib (IC50 = 1.74 µM). Further investigation showed that active candidates 8, 19 and 21 caused cell cycle arrest at the G2/M phase, and interestingly, induced cell death by apoptosis of MCF-7 cells cumulatively with 7.14, 17.52 and 24.88%, respectively, compared with DOX as a positive reference (29.09%). Molecular modeling studies, including docking, flexible alignment and surface mapping, were also done to study the interaction mode into the active site of EGFR kinase domain. There was a good agreement between modeling results and biological results. ADMET analysis and parameters of Lipinski’s rule of five were calculated. Pharmacokinetic parameters showed that compound 8 had more expected penetration through blood brain barrier than Gefitinib. The present work displayed new triazoloquinazoline based derivatives with potent cytotoxicity and promising EGFR inhibition activity.  相似文献   

18.
Potent nicotinamide phosphoribosyltransferase (NAMPT) inhibitors containing 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived ureas were identified using structure-based design techniques. The new compounds displayed improved aqueous solubilities, determined using a high-throughput solubility assessment, relative to previously disclosed urea and amide-containing NAMPT inhibitors. An optimized 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived compound exhibited potent anti-NAMPT activity (18; BC NAMPT IC50 = 11 nM; PC-3 antiproliferative IC50 = 36 nM), satisfactory mouse PK properties, and was efficacious in a PC-3 mouse xenograft model. The crystal structure of another optimized compound (29; NAMPT IC50 = 10 nM; A2780 antiproliferative IC50 = 7 nM) in complex with the NAMPT protein was also determined.  相似文献   

19.
New potent mTORC1/mTORC2 dual inhibitors, 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives, were obtained by optimizing functional groups on our previously reported PI3Kα inhibitor. All the target compounds were synthesized and structural optimization on the structure of the lead compound based on cytotoxic activity. The results showed that some of the target compounds exhibited moderate to high cytotoxic activity against cell line U87MG and PC-3. The activities against mTOR kinase were investigated and the compound 12q showed excellent activity with an IC50 value of 54 nM in the same level of the positive control BEZ235 with IC50 value of 55 nM under the same test conditions. The western blot and cell cycle results demonstrate that compound 12q is a candidate as an mTORC1/mTORC2 dual-target inhibitor. The theoretical calculations were also performed to better understanding the binding modes of the compound 12q in the mTOR active site.  相似文献   

20.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号