首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.

Background

Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.

Methodology/Principal Findings

Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.

Conclusion/Significance

Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.  相似文献   

2.
为了探讨吸氢对大鼠创伤性颅脑损伤(traumatic brain injury,TBI)急性期炎症反应的影响,将6周龄雄性SD大鼠随机分为假手术组、TBI组和吸氢治疗组。采用悬浮芯片技术检测TBI后2、6和24 h的血清细胞因子水平;TBI后24 h采用改良的神经功能缺失评分法(modified neurological severity score,mNss)评估吸氢的神经保护作用,同时取脑组织进行尼氏染色分析并对血清生化指标进行检测。神经功能评分表明,TBI大鼠吸氢后24 h内神经功能就有显著改善,尼氏染色进一步验证了吸氢对神经元的保护作用;血清细胞因子的检测表明,吸氢对TBI引起的急性炎症反应具有很好的抑制作用,表现为7种促炎因子的血清水平在TBI后2 h明显降低。此外,吸氢还可明显降低血清中心脏和肝脏标志物水平,提示吸氢对TBI急性期心脏和肝脏功能损伤具有保护作用。研究提示吸氢可能通过抑制TBI急性期的炎症反应发挥其神经保护作用。  相似文献   

3.
Li  Yanteng  Lv  Wenying  Cheng  Gang  Wang  Shuwei  Liu  Bangxin  Zhao  Hulin  Wang  Hongwei  Zhang  Leiming  Dong  Chao  Zhang  Jianning 《Neurochemical research》2020,45(11):2723-2731
Neurochemical Research - Blast-induced traumatic brain injury (bTBI) is a leading cause of disability and mortality in soldiers during the conflicts in Iraq and Afghanistan. Although substantial...  相似文献   

4.
目的:探讨不同时间高压氧治疗对颅脑损伤患者认知功能障碍的影响。方法:选择了2006年5月-2015年5月在我院接受高压氧治疗的500例颅脑损伤手术或非手术患者,根据患者开始采取高压氧治疗时间的不同分为A(入院后7d内)、B(7-30 d)、C(30 d后)三组,通过相应的治疗比较三组患者认知功能评分、FIM评分及治疗效果。结果:高压氧治疗后,三组患者较治疗前都有了不同程度上的改善,但A组在定向能力、专注能力、理解能力、复述能力、结构组织能力、记忆能力、计算能力以及自我照顾、转移、行走、交流、社会认知较B组、C组改善显著(P0.05),而B组与C组间认知功能各项评分、FIM评分比较差异无统计学意义(P0.05);A组患者治疗后总有效率为90.63%,显著优于B组73.89%的总有效率及C组70.00%的总有效率(P0.05),而B组与C组比较差异无统计学意义(P0.05)。结论:颅脑伤患者尽早的接受高压氧治疗其认知功能改善越明显,治疗效果越好。  相似文献   

5.
创伤性脑损伤(traumatic brain injury,TBI)是极为常见的外伤性疾病,致死率和致残率很高。存活者伴随的空间认知功能障碍,给患者家庭和社会造成了极大的负担。目前,对TBI造成的空间记忆障碍缺乏系统研究。脑损伤后海马组织与记忆有关的分子以及组成神经元骨架的分子如何变化研究甚少。本研究采用Wistar大鼠为研究对象,并随机将其分为假手术(sham)组和创伤性脑损伤(TBI)组。TBI组再按致伤后时间长短分为6 h、12 h、24 h、72 h、15 d五个亚组。TBI组应用PinPointTM颅脑撞击器撞击而致伤,sham组不撞击。采用Morris水迷宫评价实验动物空间记忆能力;干湿重法测定脑含水量,评估脑水肿与海马水通道蛋白4(aquaporin-4,AQP-4)的相关性;海马神经元特异性核蛋白(neuron specific nuclear protein,NeuN)标记和免疫荧光检测评估TBI致大鼠神经元丢失情况;通过Western印迹检测TBI致海马骨架相关蛋白质和记忆相关蛋白质含量变化。本研究证实,与sham组相比,TBI组大鼠潜伏期明显增加[(61.98±12.82) s vs.(28.32±8.52) s,n=5,P<0.01,day 15],探索时间明显缩短[(36.98±0.37) s vs. (73.68±5.09) s,n=5,P<0.01,day15],表明脑创伤损害了动物的空间参考记忆能力和空间工作记忆能力。与sham组相比,TBI组大鼠海马AQP-4在蛋白质水平上的表达和脑含水量持续升高,15 d恢复正常;在12 h[(3.78±0.74),(83.78±0.35)%]和72 h[(3.49±0.85),(82.28±0.63)%]均形成两个波峰,n=5,P均<0.01,表明继发性脑损伤与持续脑水肿和海马AQP-4在蛋白质上的高表达有关。与sham组相比,NeuN标记和免疫荧光检测发现,TBI后24 h 致大鼠海马神经元丢失严重[(198.2±8.002) vs.(297.2±6.866) cells/mm2, n=5,P<0.01],表明TBI动物的海马功能受损。与sham相比,TBI组海马神经元树突标志物微管结合蛋白2(microtubule associated proein 2,MAP2)和突触前终末特异性标记物突触素(synaptophysin,SYN)在蛋白质水平均伤后逐步降低(n=5,P均<0.01),72 h[(0.55±0.05) vs.(1.27±0.08), (0.52±0.14) vs.(1.06±0.16), n=5,P均<0.01]降低最明显;TBI组形成神经元纤维缠结主要成分的过度磷酸化tau(ser404),伤后逐步升高,72 h[(1.25±0.11)vs. (0.33±0.07), n=5,P<0.01]升高最明显。 MAP2、SYN和过度磷酸化的tau(ser404)检测指标的改变,表明脑损伤致神经元受损,神经元生长和损伤修复能力减弱,最终导致神经元骨架破环,TBI损害了动物的海马空间记忆能力。与sham组相比,TBI组大鼠海马环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)和磷酸化CREB ser133(phosphorylated CREB Ser133, pCREB Ser133)含量降低明显(n=5,P均<0.05),表明脑损伤动物海马的存储记忆能力减弱;TBI组大鼠海马一般调控阻遏蛋白激酶2(general control nonderepressible 2 kinase,GCN2)蛋白质升高明显(n=5,P均<0.05),表明脑损伤动物海马将新信息转化成长期记忆能力下降。本研究提示,创伤性脑损伤可使大鼠海马神经元骨架破坏,进而导致在学习记忆过程中起重要作用的分子蛋白质下调,抑制记忆储存的蛋白质(GCN2)上调,促使学习记忆功能障碍。  相似文献   

6.
创伤性脑损伤(traumatic brain injury,TBI)是极为常见的外伤性疾病,致死率和致残率很高。存活者伴随的空间认知功能障碍,给患者家庭和社会造成了极大的负担。目前,对TBI造成的空间记忆障碍缺乏系统研究。脑损伤后海马组织与记忆有关的分子以及组成神经元骨架的分子如何变化研究甚少。本研究采用Wistar大鼠为研究对象,并随机将其分为假手术(sham)组和创伤性脑损伤(TBI)组。TBI组再按致伤后时间长短分为6 h、12 h、24 h、72 h、15 d五个亚组。TBI组应用PinPointTM颅脑撞击器撞击而致伤,sham组不撞击。采用Morris水迷宫评价实验动物空间记忆能力;干湿重法测定脑含水量,评估脑水肿与海马水通道蛋白4(aquaporin-4,AQP-4)的相关性;海马神经元特异性核蛋白(neuron specific nuclear protein,NeuN)标记和免疫荧光检测评估TBI致大鼠神经元丢失情况;通过Western印迹检测TBI致海马骨架相关蛋白质和记忆相关蛋白质含量变化。本研究证实,与sham组相比,TBI组大鼠潜伏期明显增加[(61.98±12.82) s vs.(28.32±8.52) s,n=5,P<0.01,day 15],探索时间明显缩短[(36.98±0.37) s vs. (73.68±5.09) s,n=5,P<0.01,day15],表明脑创伤损害了动物的空间参考记忆能力和空间工作记忆能力。与sham组相比,TBI组大鼠海马AQP-4在蛋白质水平上的表达和脑含水量持续升高,15 d恢复正常;在12 h[(3.78±0.74),(83.78±0.35)%]和72 h[(3.49±0.85),(82.28±0.63)%]均形成两个波峰,n=5,P均<0.01,表明继发性脑损伤与持续脑水肿和海马AQP-4在蛋白质上的高表达有关。与sham组相比,NeuN标记和免疫荧光检测发现,TBI后24 h 致大鼠海马神经元丢失严重[(198.2±8.002) vs.(297.2±6.866) cells/mm2, n=5,P<0.01],表明TBI动物的海马功能受损。与sham相比,TBI组海马神经元树突标志物微管结合蛋白2(microtubule associated proein 2,MAP2)和突触前终末特异性标记物突触素(synaptophysin,SYN)在蛋白质水平均伤后逐步降低(n=5,P均<0.01),72 h[(0.55±0.05) vs.(1.27±0.08), (0.52±0.14) vs.(1.06±0.16), n=5,P均<0.01]降低最明显;TBI组形成神经元纤维缠结主要成分的过度磷酸化tau(ser404),伤后逐步升高,72 h[(1.25±0.11)vs. (0.33±0.07), n=5,P<0.01]升高最明显。 MAP2、SYN和过度磷酸化的tau(ser404)检测指标的改变,表明脑损伤致神经元受损,神经元生长和损伤修复能力减弱,最终导致神经元骨架破环,TBI损害了动物的海马空间记忆能力。与sham组相比,TBI组大鼠海马环磷酸腺苷反应元件结合蛋白(cAMP response element binding protein,CREB)和磷酸化CREB ser133(phosphorylated CREB Ser133, pCREB Ser133)含量降低明显(n=5,P均<0.05),表明脑损伤动物海马的存储记忆能力减弱;TBI组大鼠海马一般调控阻遏蛋白激酶2(general control nonderepressible 2 kinase,GCN2)蛋白质升高明显(n=5,P均<0.05),表明脑损伤动物海马将新信息转化成长期记忆能力下降。本研究提示,创伤性脑损伤可使大鼠海马神经元骨架破坏,进而导致在学习记忆过程中起重要作用的分子蛋白质下调,抑制记忆储存的蛋白质(GCN2)上调,促使学习记忆功能障碍。  相似文献   

7.
Traumatic brain injury represents a major public health issue that affects 1.7 million Americans each year and is a primary contributing factor (30.5%) of all injury-related deaths in the United States. The occurrence of traumatic brain injury is likely underestimated and thus has been termed “a silent epidemic”. Exendin-4 is a long-acting glucagon-like peptide-1 receptor agonist approved for the treatment of type 2 diabetes mellitus that not only effectively induces glucose-dependent insulin secretion to regulate blood glucose levels but also reduces apoptotic cell death of pancreatic β-cells. Accumulating evidence also supports a neurotrophic and neuroprotective role of glucagon-like peptide-1 in an array of cellular and animal neurodegeneration models. In this study, we evaluated the neuroprotective effects of Exendin-4 using a glutamate toxicity model in vitro and fluid percussion injury in vivo. We found neuroprotective effects of Exendin-4 both in vitro, using markers of cell death, and in vivo, using markers of cognitive function, as assessed by Morris Water Maze. In combination with the reported benefits of ex-4 in other TBI models, these data support repositioning of Exendin-4 as a potential treatment for traumatic brain injury.  相似文献   

8.
While there have been single case reports of the development of circadian rhythm sleep disorders, most commonly delayed sleep phase syndrome following traumatic brain injury (TBI), to our knowledge there have been no group investigations of changes to sleep timing in this population. The aim of the present study was to investigate sleep timing following TBI using the dim light melatonin onset (DLMO) as a marker of circadian phase and the Morningness‐Eveningness Questionnaire (MEQ) as a measure of sleep‐wake behavior. A sleep‐wake diary was also completed. It was hypothesized that the timing of DLMO would be delayed and that there would be a greater tendency toward eveningness on the MEQ in a post‐acute TBI group (n=10) compared to a gender and age matched control group. Participants were recruited at routine outpatient review appointments (TBI) and from the general population (control) as part of a larger study. They attended the sleep laboratory where questionnaires were completed, some retrospectively, and saliva melatonin samples were collected half‐hourly according to a standard protocol. The results show that the TBI and control groups reported similar habitual sleep times and this was reflected on the MEQ. There was, however, significant variability in the TBI group's change from the pre‐injury to the current MEQ score. The timing of melatonin onset was not different between the groups. While subtle changes (advances or delays) in this small sample may have cancelled each other out, the present study does not provide conclusive objective evidence of shift in circadian timing of sleep following TBI. Furthermore, although participants did report sleep timing changes, it is concluded that the MEQ may not be suitable for use with this cognitively impaired clinical group.  相似文献   

9.
Oxidative stress is one of the major secondary injury mechanisms after traumatic brain injury (TBI). 2-[[(1,1-Dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical-scavenging nitrone moiety, has been demonstrated promising therapeutic efficacy in ischemic stroke and Parkinson’s models. The present study aims to investigate the effects of TBN on behavioral function and neuroprotection in rats subjected to TBI. TBN (90 mg/kg) was administered twice daily for 7 days by intravenous injection following TBI. TBN improved neuronal behavior functions after brain injury, including rotarod test and adhesive paper removal test. Compared with the TBI model group, TBN treatment significantly protected NeuN-positive neurons, while decreased glial fibrillary acidic protein (GFAP)-positive cells. The number of 4-hydroxynonenal (4-HNE)-positive and 8-hydroxy-2′-deoxyguanosine (8-OHdG)-positive cells around the damaged area after TBI were significantly decreased in the TBN treatment group. In addition, TBN effectively reversed the altered expression of Bcl-2, Bax and caspase 3, and the down-regulation of nuclear factor erythroid-derived 2-like 2 (Nrf-2) and hemeoxygenase-1 (HO-1) proteins expression stimulated by TBI. In conclusion, TBN improves neurobehavioral functions and protects neurons against TBI. This protective effect may be achieved by anti-neuronal apoptosis, alleviating oxidative stress damage and up-regulating Nrf-2 and HO-1 expression.  相似文献   

10.
目的:探讨血必净注射液对重型颅脑损伤患者的神经保护作用及其机制。方法:将2012年1月至2014年12月我院收治的200例重型颅脑损伤患者分为研究组(100例)和对照组(100例),另选取100例同期在我院体检的健康者为正常组。对照组给予常规治疗,研究组在对照组基础上静脉滴注血必净注射液,治疗后第1天、第3天、第5天、第7天时观察各组TNF-α及IL-6水平变化。结果:对照组、研究组各时间点TNF-α及IL-6水平均高于正常组(均P0.05),且研究组的TNF-α及IL-6水平均低于对照组(均P0.05)。结论:血必净注射液对重型颅脑损伤患者的神经具有保护作用,其作用机制可能跟降低炎症反应有关。  相似文献   

11.
Edaravone is a novel free radical scavenger used clinically in patients with acute cerebral infarction; however, it has not been assessed in traumatic brain injury (TBI). We investigated the effects of edaravone on cerebral function and morphology following TBI. Rats received TBI with a pneumatic controlled injury device. Edaravone (3 mg/kg) or physiological saline was administered intravenously following TBI. Numbers of 8-OHdG-, 4-HNE-, and ssDNA-positive cells around the damaged area after TBI were significantly decreased in the edaravone group compared with the saline group (P < 0.01). There was a significant increase in neuronal cell number and improvement in cerebral dysfunction after TBI in the edaravone group compared with the saline group (P < 0.01). Edaravone administration following TBI inhibited free radical-induced neuronal degeneration and apoptotic cell death around the damaged area. In summary, edaravone treatment improved cerebral dysfunction following TBI, suggesting its potential as an effective clinical therapy.  相似文献   

12.
13.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组。用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P〈0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P〈0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P〈0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P〈0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

14.
《Endocrine practice》2023,29(7):546-552
ObjectiveCurrent studies on the effect of high growth hormone (GH)/insulin-like growth factor (IGF)-1 on thyroid function are inconsistent. The aim was to explore the effect and potential mechanism of high GH/IGF-1 on thyroid function by analyzing the changes of thyroid function in patients with growth hormone–secreting pituitary adenoma (GHPA).MethodsThis was a retrospective cross-sectional study. Demographic and clinical data of 351 patients with GHPA who were first admitted to Beijing Tiantan Hospital, Capital Medical University, from 2015 to 2022 were collected to analyze the relationship between high GH/IGF-1 levels and thyroid function.ResultsGH was negatively correlated with total thyroxine (TT4), free thyroxine (FT4), and thyroid-stimulating hormone (TSH). IGF-1 was positively correlated with total triiodothyronine (TT3), free triiodothyronine (FT3), and FT4 and negatively correlated with TSH. Insulin-like growth factor–binding protein (IGFBP)-3 was positively correlated with TT3, FT3, and FT3:FT4 ratio. The FT3, TT3, TSH, and FT3:FT4 ratio of patients with GHPA and diabetes mellitus (DM) were significantly lower than those with GHPA but without DM. With the increase of tumor volume, thyroid function gradually decreased. GH and IGF-1 were correlated negatively with age in patients with GHPA.ConclusionThe study emphasized the complex interaction between the GH and the thyroid axes in patients with GHPA and highlighted the potential effect of glycemic status and tumor volume on thyroid function.  相似文献   

15.
目的:探讨大鼠脑创伤后海马神经组织中casepase-3表达及其在细胞凋亡中的机制。方法:雄性Wistar大鼠72只随机分成对照组和创伤组,用Marmarou方法造成大鼠重型弥漫性颅脑创伤,采用免疫组织化学检测海马CA1区神经细胞casepase-3蛋白表达情况,原位细胞DNA断裂检测末端标记(TUNEL)法观察大鼠海马CA1区神经细胞凋亡动态变化。同时行TUNEL与caspase-3双标染色。结果:对照组海马区神经细胞casepase-3未见明显表达,创伤组海马CA1区神经细胞casepase-3表达在伤后3小时开始升高,伤后3天达高峰(P0.01),伤后7天下降明显。对照组海马区未见TUNEL阳性细胞,创伤组海马区TUNEL阳性细胞伤后3小时开始增多,伤后3天达高峰(P0.01),伤后7天下降。可见创伤组TUNEL染色与caspase-3免疫染色双标阳性的细胞伤后6小时细胞数量逐渐增多,于伤后3天达高峰(P0.01),伤后7天双标阳性细胞数量下降。Casepase-3表达与TUNEL阳性细胞明显相关(P0.01)。结论:大鼠脑创伤后casepase-3的过度表达是影响大鼠脑创伤后神经细胞凋亡原因之一,抑制casepase-3活性表达对神经组织起保护作用。  相似文献   

16.
目的:研究芸香苷对慢性脑低灌注导致大鼠认知功能障碍和脑损伤的影响。方法:采用双侧颈总动脉结扎法(bilateral common carotid artery occlusion,BCCAO)建立慢性脑低灌注大鼠模型,随机分为4组(n=10):生理盐水治疗模型组、芸香苷治疗模型组、生理盐水治疗假手术组、芸香苷治疗假手术组;连续腹腔注射芸香苷和生理盐水共12周。采用Morris水迷宫评定大鼠学习和记忆能力。采用分光光度法检测脑组织中枢胆碱能相关指标和氧化应激指标。应用免疫组织化学和El ISA方法检测脑组织炎症反应。采用Nissl染色法检测脑组织神经元缺失。结果:芸香苷治疗模型组大鼠的逃脱潜伏期较生理盐水治疗模型组明显减少(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗后显著提高了BCCAO大鼠脑组织中ACh水平(P0.01)和Ch AT活性(P0.01),并降低了ACh E活性(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗模型组显著增加了大鼠脑组织中SOD活性(P0.01)和GPX活性(P0.01),降低了MDA水平(P0.01)和蛋白质羰基化合物水平(P0.01)。芸香苷治疗模型组大鼠海马区GFAP-免疫阳性星型胶质细胞(P0.01)和Iba1-免疫阳性小胶质细胞(P0.01)面积百分比较生理盐水治疗模型组显著减少。芸香苷治疗模型组大鼠海马区正常神经元的数量较生理盐水治疗模型组大鼠显著增加(P0.01)。结论:芸香苷可改善慢性脑低灌注引起的大鼠认知功能障碍和脑损伤。  相似文献   

17.

Background

There are no drugs presently available to treat traumatic brain injury (TBI). A variety of single drugs have failed clinical trials suggesting a role for drug combinations. Drug combinations acting synergistically often provide the greatest combination of potency and safety. The drugs examined (minocycline (MINO), N-acetylcysteine (NAC), simvastatin, cyclosporine A, and progesterone) had FDA-approval for uses other than TBI and limited brain injury in experimental TBI models.

Methodology/Principal Findings

Drugs were dosed one hour after injury using the controlled cortical impact (CCI) TBI model in adult rats. One week later, drugs were tested for efficacy and drug combinations tested for synergy on a hierarchy of behavioral tests that included active place avoidance testing. As monotherapy, only MINO improved acquisition of the massed version of active place avoidance that required memory lasting less than two hours. MINO-treated animals, however, were impaired during the spaced version of the same avoidance task that required 24-hour memory retention. Co-administration of NAC with MINO synergistically improved spaced learning. Examination of brain histology 2 weeks after injury suggested that MINO plus NAC preserved white, but not grey matter, since lesion volume was unaffected, yet myelin loss was attenuated. When dosed 3 hours before injury, MINO plus NAC as single drugs had no effect on interleukin-1 formation; together they synergistically lowered interleukin-1 levels. This effect on interleukin-1 was not observed when the drugs were dosed one hour after injury.

Conclusions/Significance

These observations suggest a potentially valuable role for MINO plus NAC to treat TBI.  相似文献   

18.
目的:探讨亚低温治疗对重症颅脑损伤(sTBI)患者颅内压(ICP)、脑血流及氧代谢的影响。方法:收集50例sTBI患者随机分为实验组和对照组,每组25例,均给予常规治疗,观察组在常规治疗基础上给予亚低温辅助治疗,检测患者治疗前、治疗第3、5、7天ICP动态变化以及治疗前和治疗7天后脑血流和氧代谢等指标变化。结果:治疗第3、5、7天ICP组间差异均具有统计学意义(P0.05),随着治疗时间增加两组ICP均逐渐降低,差异具有统计学意义(P0.05);治疗前Qmean、Vmean、Wv、DR等组间差异无统计学意义(P0.05),治疗7天后Qmean、Vmean均升高,Wv、DR均降低,差异具有统计学意义(P0.05);治疗前SjvO_2、CjvO_2、CaO_2、CERO_2组间差异无统计学意义(P0.05),治疗7天后SjvO_2、CjvO_2、CERO_2均升高,CaO_2降低,差异具有统计学意义(P0.05)。结论:亚低温治疗可以显著降低患者颅内压,改善脑血流和氧代谢水平。  相似文献   

19.
Cornel iridoid glycoside (CIG) is the active ingredient extracted from Cornus officinalis. Our previous studies showed that CIG had protective effects on several brain injury models. In the present study, we aimed to examine the effects and elucidate the mechanisms of CIG against traumatic brain injury (TBI). TBI was induced in the right cerebral cortex of male adult rats. The neurological and cognitive functions were evaluated by modified neurological severity score (mNSS) and object recognition test (ORT), respectively. The level of serum S100β was measured by an ELISA method. Nissl staining was used to estimate the neuron survival in the brain. The expression of proteins was determined by western blot and/or immunohistochemical staining. We found that intragastric administration of CIG in TBI rats ameliorated the neurological defects and cognitive impairment, and alleviated the neuronal loss in the injured brain. In the acute stage of TBI (24–72 h), CIG decreased the level of S100β in the serum and brain, increased the ratio of Bcl-2/Bax and decreased the expression of caspase-3 in the injured cortex. Moreover, the treatment with CIG for 30 days increased the levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), enhanced the expression of synapsin I, synaptophysin and postsynaptic density protein 95 (PSD-95), and inhibited the apoptosis-regulating factors in the chronic stage of TBI. The present study demonstrated that CIG had neuroprotective effects against TBI through inhibiting apoptosis in the acute stage and promoting neurorestoration in the chronic stage. The results suggest that CIG may be beneficial to TBI therapy.  相似文献   

20.
Despite growing evidence that childhood represents a major risk period for mild traumatic brain injury (mTBI) from sports-related concussions, motor vehicle accidents, and falls, a reliable animal model of mTBI had previously not been developed for this important aspect of development. The modified weight-drop technique employs a glancing impact to the head of a freely moving rodent transmitting acceleration, deceleration, and rotational forces upon the brain. When applied to juvenile rats, this modified weight-drop technique induced clinically relevant behavioural outcomes that were representative of post-concussion symptomology. The technique is a rapidly applied procedure with an extremely low mortality rate, rendering it ideal for high-throughput studies of therapeutics. In addition, because the procedure involves a mild injury to a closed head, it can easily be used for studies of repetitive brain injury. Owing to the simplistic nature of this technique, and the clinically relevant biomechanics of the injury pathophysiology, the modified weight-drop technique provides researchers with a reliable model of mTBI that can be used in a wide variety of behavioural, molecular, and genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号