首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A series of potential DFMO prodrugs was designed through the incorporation of 4-nitrobenzyl ester or carbamate groups for potential activation by trypanosomal nitroreductase. It was found that only modification of Nε-amino group of DFMO by 4-nitro-2-fluorobenzyloxycarbonyl resulted in significant trypanocidal activity and could serve as a lead for further investigation.  相似文献   

4.
Our HCV research program investigated novel 2′-dihalogenated nucleoside HCV polymerase inhibitors and identified compound 1, a 5′-phosphoramidate prodrug of 2′-deoxy-2′-α-bromo-β-chloro uridine. Although 1 had a favorable in vitro activity profile in HCV replicons, oral dosing in dog resulted in low levels of the active 5′-triphosphate (TP) in liver. Metabolism studies using human hepatocytes provided a simple assay for screening alternative phosphoramidate prodrug analogs. Compounds that produced high TP concentrations in hepatocytes were tested in dog liver biopsy studies. This method identified 2-aminoisobutyric acid ethyl ester (AIBEE) phosphoramidate prodrug 14, which provided 100-fold higher TP concentrations in dog liver in comparison to 1 (4 and 24 h after 5 mg/kg oral dose).  相似文献   

5.
6.
7.
A series of amino acid prodrugs of NVR3-778, a potent anti-HBV candidate currently under phase II clinical trial, were designed and synthesized as new anti-HBV agents. Except for 1e, all of them displayed roughly comparable anti-HBV activity (IC50, 0.28–0.56 µM) to NVR3-778 (IC50, 0.26 µM). Compound 1a, a l-valine ester prodrug of NVR3-778, was found to show significantly improved water solubility (0.7 mg/mL, pH 2) as we expected, and lower cytotoxicity (CC50 > 10 µM) than NVR3-778 (CC50, 4.81 µM). Moreover, 1a also exhibited acceptable PK properties and comparable in vivo efficacy in HBV DNA hydrodynamic mouse model to that of NVR3-778, suggesting it may serve as a promising lead compound for further anti-HBV drug discovery.  相似文献   

8.
It is necessary to consider the affinity of prodrugs for metabolic enzymes for efficient activation of the prodrugs in the body. Although many prodrugs have been synthesized with consideration of these chemical properties, there has been little study on the design of a structure with consideration of biological properties such as substrate recognition ability of metabolic enzymes. In this report, chemical synthesis and evaluation of indomethacin prodrugs metabolically activated by human carboxylesterase 1 (hCES1) are described. The synthesized prodrugs were subjected to hydrolysis reactions in solutions of human liver microsomes (HLM), human intestine microsomes (HIM) and hCES1, and the hydrolytic parameters were investigated to evaluate the hydrolytic rates of these prodrugs and to elucidate the substrate recognition ability of hCES1. It was found that the hydrolytic rates greatly change depending on the steric hindrance and stereochemistry of the ester in HLM, HIM and hCES1 solutions. Furthermore, in a hydrolysis reaction catalyzed by hCES1, the Vmax value of n-butyl thioester with chemically high reactivity was significantly lower than that of n-butyl ester.  相似文献   

9.
The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates.  相似文献   

10.
In our continued effort to develop prodrugs of phosphoramide mustard, conjugates of 4-aminocyclophosphamide (4-NH2-CPA) with three PSA-specific peptides were synthesized and evaluated as substrates of PSA. These include conjugates of cis-(2R,4R)-4-NH2-CPA with a tetrapeptide Succinyl-Ser-Lys-Leu-Gln-OH, a hexapeptide Succinyl-His-Ser-Ser-Lys-Leu-Gln-OH, and a pentapeptide Glutaryl-Hyp-Ala-Ser-Chg-Gln-OH. These conjugates were cleaved by PSA efficiently and exclusively after the expected glutamine residue to release 4-NH2-CPA, the activated prodrug form of phosphoramide mustard. The cleavage was most efficient for the pentapeptide conjugate 3 (Glutaryl-Hyp-Ala-Ser-Chg-Gln-NH-CPA), which showed a half-life of 55 min with PSA, followed by the hexapeptide conjugate 2 (Succinyl-His-Ser-Ser-Lys-Leu-Gln-NH-CPA) and the tertrapeptide conjugate 1 (Succinyl-Ser-Lys-Leu-Gln-NH-CPA) with half-lives of 6.5 and 12 h, respectively. These results indicate a potential of the conjugate 3 as an anticancer prodrug of phosphoramide mustard for selective PSA activation.  相似文献   

11.
12.
Leishmaniasis 1 1These authors contributed equally.Communicated by Ramaswamy H. SarmaCommunicated by Ramaswamy H. Sarma is an endemic disease mainly caused by the protozoan Leishmania donovani (Ld). Polyamines have been identified as essential organic compounds for the growth and survival of Ld. These are synthesized in Ld by polyamine synthesis pathway comprising of many enzymes such as ornithine decarboxylase (ODC), spermidine synthase (SS), and S-adenosylmethionine decarboxylase. Inhibition of these enzymes in Ld offers a viable prospect to check its growth and development. In the present work, we used computational approaches to search natural inhibitors against ODC and SS enzymes. We predicted three-dimensional structures of ODC and SS using comparative modeling and molecular dynamics (MD) simulations. Thousands of natural compounds were virtually screened against target proteins using high throughput approach. MD simulations were then performed to examine molecular interactions between the screened compounds and functional residues of the active sites of the enzymes. Herein, we report two natural compounds of dual inhibitory nature active against the two crucial enzymes of polyamine pathway of Ld. These dual inhibitors have the potential to evolve as lead molecules in the development of antileishmanial drugs.  相似文献   

13.
Understanding the biophysical mechanisms that shape variability in fisheries recruitment is critical for estimating the effects of climate change on fisheries. In this study, we used an Earth System Model (ESM) and a mechanistic individual‐based model (IBM) for larval fish to analyze how climate change may impact the growth and survival of larval cod in the North Atlantic. We focused our analysis on five regions that span the current geographical range of cod and are known to contain important spawning populations. Under the SRES A2 (high emissions) scenario, the ESM‐projected surface ocean temperatures are expected to increase by >1 °C for 3 of the 5 regions, and stratification is expected to increase at all sites between 1950–1999 and 2050–2099. This enhanced stratification is projected to decrease large (>5 μm ESD) phytoplankton productivity and mesozooplankton biomass at all 5 sites. Higher temperatures are projected to increase larval metabolic costs, which combined with decreased food resources will reduce larval weight, increase the probability of larvae dying from starvation and increase larval exposure to visual and invertebrate predators at most sites. If current concentrations of piscivore and invertebrate predators are maintained, larval survival is projected to decrease at all five sites by 2050–2099. In contrast to past observed responses to climate variability in which warm anomalies led to better recruitment in cold‐water stocks, our simulations indicated that reduced prey availability under climate change may cause a reduction in larval survival despite higher temperatures in these regions. In the lower prey environment projected under climate change, higher metabolic costs due to higher temperatures outweigh the advantages of higher growth potential, leading to negative effects on northern cod stocks. Our results provide an important first large‐scale assessment of the impacts of climate change on larval cod in the North Atlantic.  相似文献   

14.
15.
Considerable progress has been made in recent years in our understanding of the structural basis of glycosyl transfer. Yet the nature and relevance of the conformational changes associated with substrate recognition and catalysis remain poorly understood. We have focused on the glucosyl-3-phosphoglycerate synthase (GpgS), a "retaining" enzyme, that initiates the biosynthetic pathway of methylglucose lipopolysaccharides in mycobacteria. Evidence is provided that GpgS displays an unusually broad metal ion specificity for a GT-A enzyme, with Mg(2+), Mn(2+), Ca(2+), Co(2+), and Fe(2+) assisting catalysis. In the crystal structure of the apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I) in the active site of both monomers of the protein dimer. Notably, the L(A) loop geometry corresponds to an active conformation and is conserved in two other relevant states of the enzyme, namely the GpgS·metal·nucleotide sugar donor and the GpgS·metal·nucleotide·acceptor-bound complexes, indicating that GpgS is intrinsically in a catalytically active conformation. The crystal structure of GpgS in the presence of Mn(2+)·UDP·phosphoglyceric acid revealed an alternate conformation for the nucleotide sugar β-phosphate, which likely occurs upon sugar transfer. Structural, biochemical, and biophysical data point to a crucial role of the β-phosphate in donor and acceptor substrate binding and catalysis. Altogether, our experimental data suggest a model wherein the catalytic site is essentially preformed, with a few conformational changes of lateral chain residues as the protein proceeds along the catalytic cycle. This model of action may be applicable to a broad range of GT-A glycosyltransferases.  相似文献   

16.
Constitutive activation of the canonical NF-κB signaling pathway is a major factor in Kaposi’s sarcoma-associated herpes virus pathogenesis where it is essential for the survival of primary effusion lymphoma. Central to this process is persistent upregulation of the inhibitor of κB kinase (IKK) complex by the virally encoded oncoprotein vFLIP. Although the physical interaction between vFLIP and the IKK kinase regulatory component essential for persistent activation, IKKγ, has been well characterized, it remains unclear how the kinase subunits are rendered active mechanistically. Using a combination of cell-based assays, biophysical techniques, and structural biology, we demonstrate here that vFLIP alone is sufficient to activate the IKK kinase complex. Furthermore, we identify weakly stabilized, high molecular weight vFLIP–IKKγ assemblies that are key to the activation process. Taken together, our results are the first to reveal that vFLIP-induced NF-κB activation pivots on the formation of structurally specific vFLIP–IKKγ multimers which have an important role in rendering the kinase subunits active through a process of autophosphorylation. This mechanism of NF-κB activation is in contrast to those utilized by endogenous cytokines and cellular FLIP homologues.  相似文献   

17.
Prion diseases are fatal neurodegenerative disorders. Identification of possible therapeutic tools is important in the search for a potential treatment for these diseases. Congo red is an azo dye that has been used for many years to detect abnormal prion protein in the brains of diseased patients or animals. Congo red has little therapeutic potential for the treatment of these diseases due to toxicity and poor permeation of the blood-brain barrier. We have prepared two Congo red derivatives, designed without these liabilities, with potent activity in cellular models of prion disease. One of these compounds cured cells of the transmissible agent. The mechanism of action of these compounds is possibly multifactorial. The high affinity of Congo red derivatives, including compounds that are ineffective and are effective at the cure of prion disease, for abnormally folded prion protein suggests that the amyloidophylic property of these derivatives is not as critical to the mechanism of action as other effects. Congo red derivatives that are effective at the cure of prion disease increased the degradation of abnormal PrP by the proteasome. Therefore, the principal mechanism of action of the Congo red analogues was to prevent inhibition of proteasomal activity by PrPSc.  相似文献   

18.
Although originally discovered as inhibitors of pencillin-binding proteins, beta-lactams have more recently found utility as serine protease inhibitors. Indeed through their ability to react irreversibly with nucleophilic serine residues they have proved extraordinarily successful as enzyme inhibitors. Consequently there has been much speculation as to the reason for the general effectiveness of beta-lactams as antibacterials or inhibitors of hydrolytic enzymes. The interaction of analogous beta- and gamma-lactams with a serine protease was investigated. Three series of gamma-lactams based upon monocyclic beta-lactam inhibitors of elastase [Firestone, R. A. et al. (1990) Tetrahedron 46, 2255-2262.] but with an extra methylene group inserted between three of the bonds in the ring were synthesized. Their interaction with porcine pancreatic elastase and their efficacy as inhibitors were evaluated through the use of kinetic, NMR, mass spectrometric, and X-ray crystallographic analyses. The first series, with the methylene group inserted between C-3 and C-4 of the beta-lactam template, were readily hydrolyzed but were inactive or very weakly active as inhibitors. The second series, with the methylene group between C-4 and the nitrogen of the beta-lactam template, were inhibitory and reacted reversibly with PPE to form acyl-enzyme complexes, which were stable with respect to hydrolysis. The third series, with the methylene group inserted between C-2 and C-3, were not hydrolyzed and were not inhibitors consistent with lack of binding to PPE. Comparison of the crystal structure of the acyl-enzyme complex formed between PPE and a second series gamma-lactam and that formed between PPE and a peptide [Wilmouth, R. C., et al. (1997) Nat. Struct. Biol. 4, 456-462.] reveals why the complexes formed with this series were resistant to hydrolysis and suggests ways in which stable acyl-enzyme complexes might be obtained from monocyclic gamma-lactam-based inhibitors.  相似文献   

19.
  1. Download : Download high-res image (200KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号