首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-1H-quinolin-4-ones have been identified with high binding affinities for 5-HT6 receptor. In particular, 2-methyl-5-(N-methyl-piperazin-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dihydro-1H-quinolin-4-one (8g) exhibits high binding affinity toward 5-HT6 (IC50 = 8 nM) receptor with good selectivity over other serotonin and dopamine receptors.  相似文献   

2.
A series of novel tacrine-isatin Schiff base hybrid derivatives (7a-p) were designed, synthesized and evaluated as multi-target candidates against Alzheimer’s disease (AD). The biological assays indicated that most of these compounds displayed potent inhibitory activity toward acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and specific selectivity for AChE over BuChE. It was also found that they act as excellent metal chelators. The compounds 7k and 7m were found to be good inhibitors of AChE-induced amyloid-beta (Aβ) aggregation. Most of the compounds inhibited AChE with the IC50 values, ranging from 0.42 nM to 79.66 nM. Amongst them, 7k, 7m and 7p, all with a 6 carbon linker between tacrine and isatin Schiff base exhibited the strongest inhibitory activity against AChE with IC50 values of 0.42 nM, 0.62 nM and 0.95 nM, respectively. They were 92-, 62- and 41-fold more active than tacrine (IC50 = 38.72 nM) toward AChE. Most of the compounds also showed a potent BuChE inhibition among which 7d with an IC50 value of 0.11 nM for BuChE is the most potent one (56-fold more potent than that of tacrine (IC50 = 6.21 nM)). In addition, most compounds exhibited the highest metal chelating property. Kinetic and molecular modeling studies revealed that 7k is a mixed-type inhibitor, capable of binding to catalytic and peripheral site of AChE. Our findings make this hybrid scaffold an excellent candidate to modify current drugs in treating Alzheimer’s disease (AD).  相似文献   

3.
Twenty eight new aryloxybenzene analogues were synthesized and their in vitro binding potencies toward S1PR2 were determined using a [32P]S1P competitive binding assay. Out of these new analogues, three compounds, 28c (IC50 = 29.9 ± 3.9 nM), 28e (IC50 = 14.6 ± 1.5 nM), and 28g (IC50 = 38.5 ± 6.3 nM) exhibited high binding potency toward S1PR2 and high selectivity over the other four receptor subtypes (S1PR1, 3, 4, and 5; IC50 > 1000 nM). Each of the three potent compounds 28c, 28e, and 28g contains a fluorine atom that will allow to develop F-18 labeled PET radiotracers for imaging S1PR2.  相似文献   

4.
As part of our ongoing efforts to develop reversible inhibitors of LSD1, we identified a series of 4-(pyrrolidin-3-yl)benzonitrile derivatives that act as successful scaffold-hops of the literature inhibitor GSK-690. The most active compound, 21g, demonstrated a Kd value of 22 nM and a biochemical IC50 of 57 nM. In addition, this compound displayed improved selectivity over the hERG ion channel compared to GSK-690, and no activity against the related enzymes MAO-A and B. In human THP-1 acute myeloid leukaemia cells, 21g was found to increase the expression of the surrogate cellular biomarker CD86. This work further demonstrates the versatility of scaffold-hopping as a method to develop structurally diverse, potent inhibitors of LSD1.  相似文献   

5.
Bruton’s tyrosine kinase (BTK) has emerged as an attractive target related to B-lymphocytes dysfunctions, especially hematologic malignancies and autoimmune diseases. In our study, a series of diphenylaminopyrimidine derivatives bearing dithiocarbamate moieties were designed and synthesized as novel BTK inhibitors for treatment of B-cell lymphoma. Among all these compounds, 30ab (IC50 = 1.15 ± 0.19 nM) displays similar or more potent inhibitory activity against BTK than spebrutinib (IC50 = 2.12 ± 0.32 nM) and FDA approved drug ibrutinib (IC50 = 3.89 ± 0.57 nM), which is attributed to close binding of 30ab with BTK predicted by molecular docking. In particular, 30ab exhibits enhanced anti-proliferative activity against B-lymphoma cell lines at the IC50 concentration of 0.357 ± 0.02 μM (Ramos) and 0.706 ± 0.05 μM (Raji), respectively, almost 10-fold better than ibrutinib and spebrutinib. In addition, 30ab displays stronger selectivity on B-cell lymphoma over other cancer cell lines than spebrutinib. Furthermore, 30ab efficiently blocks BTK downstream pathways and results in apoptosis of cancer cells. In vivo xenograft model evaluation demonstrates the significant efficacy and broad safety margin of 30ab in treatment of B-cell lymphoma. We propose that compound 30ab is a candidate for further study and development based on our current findings.  相似文献   

6.
Aberrant activation of B cell receptor (BCR) signal transduction cascade contributes to the propagation and maintenance of B cell malignancies. The discovery of mall molecules with high potency and selectivity against Bruton’s tyrosine kinase (BTK), a key signaling molecule in this cascade, is particularly urgent in modern treatment regimens. Herein, a series of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione derivatives were reported as potent BTK inhibitors. Compounds 17 and 18 displayed strong BTK inhibitory activities in the enzymatic inhibition assay, with the IC50 values of 1.2 and 0.8 nM, respectively, which were comparable to that of ibrutinib (IC50 = 0.6 nM). Additionally, compound 17 had a more selective profile over EGFR than ibrutinib. According to the putative binding poses, the molecular basis of this series of compounds with respect to potency against BTK and selectivity over EGFR was elucidated. In further experiments at cellular level, compounds 17 and 18 significantly inhibited the proliferation of Ramos and TMD8 cells. And they arrested 75.4% and 75.2% of TMD8 cells in G1 phase, respectively, at the concentration of 1 µM.  相似文献   

7.
Polo-like kinase 1 (Plk1) is an anti-cancer target due to its critical role in mitotic progression. A growing body of evidence has documented that Peptide-Plk1 inhibitors showed high Plk1 binding affinity. However, phosphopeptides-Plk1 inhibitors showed poor cell membranes permeability, which limits their clinical applications. In current study, nine candidate phosphopeptides consisting of non-natural amino acids were rationally designed and then successfully synthesized using an Fmoc-solid phase peptide synthesis (SPPS) strategy. Moreover, the binding affinities and selectivity were evaluated via fluorescence polarization (FP) assay. The results confirmed that the most promising phosphopeptide 6 bound to Plk1 PBD with the IC50 of 38.99?nM, which was approximately 600-fold selectivity over Plk3 PBD (IC50?=?25.44?μM) and nearly no binding to Plk2 PBD. Furthermore the intracellular activities and the cell membrane permeability of phosphopeptide 6 were evalutated. Phosphopeptide 6 demonstrated appropriate cell membrane permeability and arrested HeLa cells cycle in G2/M phase by regulating CyclinB1-CDK1. Further, phosphopeptide 6 showed typical apoptotic morphology and induced caspase-dependent apoptosis. In conclusion, we expect our discovery can provide new insights into the further optimization of Plk1 PBD inhibitors.  相似文献   

8.
Eleven new sphingosine 1-phosphate receptor 2 (S1PR2) ligands were synthesized by modifying lead compound N-(2,6-dichloropyridin-4-yl)-2-(4-isopropyl-1,3-dimethyl-1H-pyrazolo[3,4-b]pyridin-6-yl)hydrazine-1-carboxamide (JTE-013) and their binding affinities toward S1PRs were determined in vitro using [32P]S1P and cell membranes expressing recombinant human S1PRs. Among these ligands, 35a (IC50?=?29.1?±?2.6?nM) and 35b (IC50?=?56.5?±?4.0?nM) exhibit binding potency toward S1PR2 comparable to JTE-013 (IC50?=?58.4?±?7.4?nM) with good selectivity for S1PR2 over the other S1PRs (IC50?>?1000?nM). Further optimization of these analogues may identify additional and more potent and selective compounds targeting S1PR2.  相似文献   

9.
The overexpression of CYP1 family of enzymes is reported to be associated with development of human carcinomas. It has been well reported that CYP1A1 specific inhibitors prevents carcinogenesis. Herein, thirteen pyridine-4-yl series of chalcones were synthesized and screened for inhibition of CYP1 isoforms 1A1, 1B1 and 1A2 in Sacchrosomes? and live human HEK293 cells. The structure-activity relationship analysis indicated that chalcones bearing tri-alkoxy groups (8a and 8k) on non-heterocyclic ring displayed selective inhibition of CYP1A1 enzyme, with IC50 values of 58 and 65?nM, respectively. The 3,4,5-trimethoxy substituted derivative 8a have shown >10-fold selectivity towards CYP1A1 with respect to other enzymes of the CYP1 sub-family and >100-fold selectivity with respect to CYP2 and CYP3 family of enzymes. The potent and selective CYP1A1 inhibitor 8a displayed antagonism of B[a]P mediated activation of aromatic hydrocarbon receptor (AhR) in yeast cells, and also protected human cells from CYP1A1-mediated B[a]P toxicity in human cells. This potent and selective inhibitor of CYP1A1 enzyme have a potential for development as cancer chemopreventive agent.  相似文献   

10.
A series of (1H-benzo[d][1,2,3]triazol-1-yl)(4-benzylpiperazin-1-yl)methanones and of (1H-benzo[d][1,2,3]triazol-1-yl)(4-phenylpiperazin-1-yl)methanones has been prepared and tested on human fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). In the benzylpiperazinyl series, compound 29 (ML30) exhibited an IC50 value of 0.54 nM on MAGL, combined with a 1000-fold selectivity versus FAAH, while compounds 11 and 16 acted as potent dual FAAH-MAGL inhibitors (IC50 <10 nM). In the phenylpiperazinyl series, compounds 37, 38, 42, and 43 displayed IC50 values against MAGL in the nanomolar range, whilst being between one and two orders of magnitude less potent on the FAAH, while compounds 31 and 32 were potent FAAH inhibitors (IC50 <20 nM) and over 12-fold selective versus MAGL. The key structural determinants driving the structure–activity relationships were explored by the minimization of the inhibitors inside the active site of both enzymes.  相似文献   

11.
Janus kinases (JAKs) regulate various cancers and immune responses and are targets for the treatment of cancers and immune diseases. A new series of 1H-pyrazolo[3,4-d]pyrimidin-4-amino derivatives were synthesized and optimized by introducing a functional 3,5-disubstituted-1H-pyrazole moiety into the C-3 moiety of pyrazole template, and then were biologically evaluated as potent Janus kinase 2 (JAK2) inhibitors. Among these molecules, inhibitors 11f, 11g, 11h and 11k displayed strong activity and selectivity against the JAK2 kinase, with IC50 values of 7.2?nM, 6.5?nM, 8.0?nM and 9.7?nM, respectively. In particular, the cellular inhibitory assay and western blot analysis further support the JAK2 selectivity of compound 11g also in cells. Furthermore, compound 11g also exhibited potent inhibitory activity in lymphocytes proliferation assay and delayed hypersensitivity assay. Taken together, the novel JAK2 selective inhibitors discovered in this study may be potential lead compounds for new drug discovery via further development of more potent and selective JAK2 inhibitors.  相似文献   

12.
A series of novel alkoxy-piperidine derivatives were synthesized and evaluated for their serotonin reuptake inhibitory and binding affinities for 5-HT1A/5-HT7 receptors. In vivo antidepressant activities of the selective compounds were explored using the forced swimming test (FST) and tail suspension test (TST) in mice. The results showed that compounds 7a (reuptake inhibition (RUI), IC50 = 177 nM; 5-HT1A, Ki = 12 nM; 5-HT7, Ki = 25 nM) and 15g (RUI, IC50 = 85 nM; 5-HT1A, Ki = 17 nM; 5-HT7, Ki = 35 nM) were potential antidepressant agents in animal behavioral models with high 5-HT1A/5-HT7 receptor affinities and moderate serotonin reuptake inhibition, and good metabolic stability in vitro.  相似文献   

13.
The initial focus on characterizing novel pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as DPP-4 inhibitors, led to a potent and selective inhibitor compound b2. This ligand exhibits potent in vitro DPP-4 inhibitory activity (IC50: 80?nM), while maintaining other key cellular parameters such as high selectivity, low cytotoxicity and good cell viability. Subsequent optimization of b2 based on docking analysis and structure-based drug design knowledge resulted in d1. Compound d1 has nearly 2-fold increase of inhibitory activity (IC50: 49?nM) and over 1000-fold selectivity against DPP-8 and DPP-9. Further in vivo IPGTT assays showed that compound b2 effectively reduce glucose excursion by 34% at the dose of 10?mg/kg in diabetic mice. Herein we report the optimization and design of a potent and highly selective series of pyrazolo[1,5-a]pyrimidin-7(4H)-one DPP-4 inhibitors.  相似文献   

14.
A new series of structurally rigid donepezil analogues was designed, synthesized and evaluated as potential multi-target-directed ligands (MTDLs) against neurodegenerative diseases. The investigated compounds 1013 displayed dual AChE and BACE-1 inhibitory activities in comparison to donepezil, the FDA-approved drug. The hybrid compound 13 bearing 2-aminoquinoline scaffold exhibited potent AChE inhibition (IC50 value of 14.7?nM) and BACE-1 inhibition (IC50 value of 13.1?nM). Molecular modeling studies were employed to reveal potential dual binding mode of 13 to AChE and BACE-1. The effect of the investigated compounds on the viability of SH-SY5Y neuroblastoma cells and their ability to cross the blood-brain barrier (BBB) in PAMPA-BBB assay were further studied.  相似文献   

15.
A series of novel benzyl-substituted (S)-phenylalanine derivatives were synthesized and evaluated for their dipeptidyl peptidase 4 (DPP-4) inhibitory activity and selectivity. It was found that most synthesized target compounds were potent DPP-4 inhibitors with IC50 values in 3.79–25.52 nM, which were significantly superior to that of the marketed drug sitagliptin. Furthermore, the 4-fluorobenzyl substituted phenylalanine derivative 6g not only displayed the potent DPP-4 inhibition with an IC50 value of 3.79 nM, but also showed better selectivity against DPP-4 over other related enzymes including DPP-7, DPP-8, and DPP-9. In an oral glucose tolerance test (OGTT) in normal Sprague Dawley rats, compound 6g reduced blood glucose excursion in a dose-dependent manner.  相似文献   

16.
A series of quinoline-3-carboxamide containing sulfones was prepared and found to have good binding affinity for LXRβ and moderate binding selectivity over LXRα. The 8-Cl quinoline analog 33 with a high TPSA score, displayed 34-fold binding selectivity for LXRβ over LXRα (LXRβ IC50 = 16 nM), good activity for inducing ABCA1 gene expression in a THP macrophage cell line, desired weak potency in the LXRα Gal4 functional assay, and low blood–brain barrier penetration in rat.  相似文献   

17.
The similarity of spatial structure between radicicol and matrine urged us to perform conformation modification of matrine, followed by L-shaped matrine derivatives, 6, 12, 21a-h and 22a-h were originally designed, synthesized and evaluated for Hsp90N inhibitors as anticancer agents. TSA (Thermal Shift Assay) results indicated that 21e, 22a-c and 22e-g exhibited strong binding force against Hsp90N with∣ΔTm∣ > 3, meanwhile, MTT assay also revealed these compounds displayed potent anticancer activity with IC50 values below 25 μM against HepG2, HeLa and MDA-MB-231 cells lines. Then, compound 22g with a high ΔTm = 10.92 was chosen as a representative to perform further mechanism study. It can induce cell apoptosis, arrest the cell cycle at the S phase and decrease the expression level of Hsp90 in Hela cell. These results originally provided targeted modification strategy for matrine derivatives to serve as Hsp90 inhibitors for cancer therapy.  相似文献   

18.
2-Acetyl pyridine thiosemicarbazone containing an 1-(4-fluorophenyl)-piperazinyl ring incorporated at N(4)-position, HAcPipPheF (1) and the zinc(II) complexes [Zn(AcPipPheF)2] (2) and [Zn(OAc)(AcPipPheF)]2 (3) have been prepared and structurally characterized by means of vibrational and NMR (1H and 13C) spectroscopy. The crystal structures of the compounds 1-3 have been determined by X-ray crystallography. The metal coordination geometry of [Zn(AcPipPheF)2] is described as distorted octahedral configuration in a trans-N-cis-N-cis-S configuration. In [Zn(OAc)(AcPipPheF)]2 one of the acetato group exhibits monoatomic bridge and the other bridges in a bidentate manner. The zinc(1) metal ion is coordinated in a distorted octahedral configuration while the metal coordination of Zn(2) is described as distorted square pyramidal. Biomedical studies revealed that, compounds 1-3 displayed potent anticancer activity. The antiproliferative activity of 1-3 was found to be considerably stronger than that of cis-platin. The IC50 values range from 26 to 90 nM, against all cell lines tested, while for cis-platin the IC50 values range from 2 to 17 μM and for the zinc salt, ZnCl2, the IC50 values range from 81 to 93 μM. The complex 3 shows the highest activity against all four cancer cell lines and the highest selectivity against K562 and MDA-MB-453 cancer cell lines. The compounds inhibited tumor cell proliferation by arresting the cell cycle progression at the S phase.  相似文献   

19.
Steroidal and non-steroidal aromatase inhibitors target the suppression of estrogen biosynthesis in the treatment of breast cancer. Researchers have increasingly focused on developing non-steroidal derivatives for their potential clinical use avoiding steroidal side-effects.Non-steroidal derivatives generally have planar aromatic structures attached to the azole ring system. One part of this ring system comprises functional groups that inhibit aromatization through the coordination of the haem group of the aromatase enzyme. Replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase selectivity over aromatase enzyme inhibition.In this study, 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives were synthesized and physical analyses and structural determination studies were performed. The IC50 values were determined by a fluorescence-based aromatase inhibition assay and compound 1 (4-(2-hydroxyphenyl)-2-(pyrimidine-2-yl)thiazole) were found potent inhibitor of enzyme (IC50:0.42?nM). Then, their antiproliferative activity over MCF-7 and HEK-293 cell lines was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds 1, 7, 8, 13, 15, 18, 21 were active against MCF-7 breast cancer cells. Lastly, a series of docking experiments were undertaken to analyze the crystal structure of human placental aromatase and identify the possible interactions between the most active structure and the active site.  相似文献   

20.
A novel series of 2-amino-1,3,5-triazines bearing a tricyclic moiety as heat shock protein 90 (Hsp90) inhibitors is described. Molecular design was performed using X-ray cocrystal structures of the lead compound CH5015765 and natural Hsp90 inhibitor geldanamycin with Hsp90. We optimized affinity to Hsp90, in vitro cell growth inhibitory activity, water solubility, and liver microsomal stability of inhibitors and identified CH5138303. This compound showed high binding affinity for N-terminal Hsp90α (Kd = 0.52 nM) and strong in vitro cell growth inhibition against human cancer cell lines (HCT116 IC50 = 0.098 μM, NCI-N87 IC50 = 0.066 μM) and also displayed high oral bioavailability in mice (F = 44.0%) and potent antitumor efficacy in a human NCI-N87 gastric cancer xenograft model (tumor growth inhibition = 136%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号