共查询到20条相似文献,搜索用时 15 毫秒
1.
The cholinergic system is a neuromodulatory neurotransmitter system involved in a variety of brain processes, including learning and memory, attention, and motor processes, among others. The influence of nicotinic acetylcholine receptors of the cholinergic system are moderated by lynx proteins, which are GPI-anchored membrane proteins forming tight associations with nicotinic receptors. Previous studies indicate lynx1 inhibits nicotinic receptor function and limits neuronal plasticity. We sought to investigate the mechanism of action of lynx1 on nicotinic receptor function, through the generation of lynx mouse models, expressing a soluble version of lynx and comparing results to the full length overexpression. Using rotarod as a test for motor learning, we found that expressing a secreted variant of lynx leads to motor learning enhancements whereas overexpression of full-length lynx had no effect. Further, adult lynx1KO mice demonstrated comparable motor learning enhancements as the soluble transgenic lines, whereas previously, aged lynx1KO mice showed performance augmentation only with nicotine treatment. From this we conclude the motor learning is more sensitive to loss of lynx function, and that the GPI anchor plays a role in the normal function of the lynx protein. In addition, our data suggests that the lynx gene plays a modulatory role in the brain during aging, and that a soluble version of lynx has potential as a tool for adjusting cholinergic-dependent plasticity and learning mechanisms in the brain. 相似文献
2.
Adeline Goulet William M. Behnke-Parks Charles V. Sindelar Jennifer Major Steven S. Rosenfeld Carolyn A. Moores 《The Journal of biological chemistry》2012,287(53):44654-44666
Kinesin-5 is required for forming the bipolar spindle during mitosis. Its motor domain, which contains nucleotide and microtubule binding sites and mechanical elements to generate force, has evolved distinct properties for its spindle-based functions. In this study, we report subnanometer resolution cryoelectron microscopy reconstructions of microtubule-bound human kinesin-5 before and after nucleotide binding and combine this information with studies of the kinetics of nucleotide-induced neck linker and cover strand movement. These studies reveal coupled, nucleotide-dependent conformational changes that explain many of this motor''s properties. We find that ATP binding induces a ratchet-like docking of the neck linker and simultaneous, parallel docking of the N-terminal cover strand. Loop L5, the binding site for allosteric inhibitors of kinesin-5, also undergoes a dramatic reorientation when ATP binds, suggesting that it is directly involved in controlling nucleotide binding. Our structures indicate that allosteric inhibitors of human kinesin-5, which are being developed as anti-cancer therapeutics, bind to a motor conformation that occurs in the course of normal function. However, due to evolutionarily defined sequence variations in L5, this conformation is not adopted by invertebrate kinesin-5s, explaining their resistance to drug inhibition. Together, our data reveal the precision with which the molecular mechanism of kinesin-5 motors has evolved for force generation. 相似文献
3.
This study was designed to investigate the sites of potential specific modulations in the neural control of lengthening and subsequent isometric maximal voluntary contractions (MVCs) versus purely isometric MVCs of the plantar flexor muscles, when there is enhanced torque during and following stretch. Ankle joint torque during maximum voluntary plantar flexion was measured by a dynamometer when subjects (n = 10) lay prone on a bench with the right ankle tightly strapped to a foot-plate. Neural control was analysed by comparing soleus motor responses to electrical nerve stimulation (M-wave, V-wave), electrical stimulation of the cervicomedullary junction (CMEP) and transcranial magnetic stimulation of the motor cortex (MEP). Enhanced torque of 17±8% and 9±8% was found during and 2.5–3 s after lengthening MVCs, respectively. Cortical and spinal responsiveness was similar to that in isometric conditions during the lengthening MVCs, as shown by unchanged MEPs, CMEPs and V-waves, suggesting that the major voluntary motor pathways are not subject to substantial inhibition. Following the lengthening MVCs, enhanced torque was accompanied by larger MEPs (p≤0.05) and a trend to greater V-waves (p≤0.1). In combination with stable CMEPs, increased MEPs suggest an increase in cortical excitability, and enlarged V-waves indicate greater motoneuronal output or increased stretch reflex excitability. The new results illustrate that neuromotor pathways are altered after lengthening MVCs suggesting that the underlying mechanisms of the enhanced torque are not purely mechanical in nature. 相似文献
4.
Kanae Sakai Plinio Trabasso Maria Luiza Moretti Yuzuru Mikami Katsuhiko Kamei Tohru Gonoi 《Mycopathologia》2014,178(1-2):11-26
The increasing incidence of infectious diseases caused by fungi in immunocompromised patients has encouraged researchers to develop rapid and accurate diagnosis methods. Identification of the causative fungal species is critical in deciding the appropriate treatment, but it is not easy to get satisfactory results due to the difficulty of fungal cultivation and morphological identification from clinical samples. In this study, we established a microarray system that can identify 42 species from 24 genera of clinically important fungal pathogens by using a chemical color reaction in the detection process. The array uses the internal transcribed spacer region of the rRNA gene for identification of fungal DNA at the species level. The specificity of this array was tested against a total of 355 target and nontarget fungal species. The fungal detection was succeeded directly from 103 CFU/ml for whole blood samples, and 50 fg DNA per 1 ml of serum samples indicating that the array system we established is sensitive to identify infecting fungi from clinical sample. Furthermore, we conducted isothermal amplification in place of PCR amplification and labeling. The successful identification with PCR-amplified as well as isothermally amplified target genes demonstrated that our microarray system is an efficient and robust method for identifying a variety of fungal species in a sample. 相似文献
5.
Abstract When two common bacterial fish pathogens were cocultured with a ciliated protozoan, enhancement of each bacterial species was observed over time. Enhancement was hypothesized to be related to the uptake of intracellular nutrients by bacteria which survived protozoan ingestion. To test this ingestion/survival phenomenon, we developed a technique of chlorination and sonication of cocultures which showed that viable cells of both bacteria were contained within the protozoa. This implicated the importance of ingestion and survival from digestive processes for the increased growth of each bacterium. 相似文献
6.
7.
The spinal motoneuron has long been a good model system for studying neural function because it is a neuron of the central nervous system with the unique properties of (1) having readily identifiable targets (the muscle fibers) and therefore having a very well-known function (to control muscle contraction); (2) being the convergent target of many spinal and descending networks, hence the name of "final common pathway"; and (3) having a large soma which makes it possible to penetrate them with sharp intracellular electrodes. Furthermore, when studied in vivo, it is possible to record simultaneously the electrical activity of the motoneurons and the force developed by their muscle targets. Performing intracellular recordings of motoneurons in vivo therefore put the experimentalist in the unique position of being able to study, at the same time, all the compartments of the "motor unit" (the name given to the motoneuron, its axon, and the muscle fibers it innervates1): the inputs impinging on the motoneuron, the electrophysiological properties of the motoneuron, and the impact of these properties on the physiological function of the motoneurons, i.e. the force produced by its motor unit. However, this approach is very challenging because the preparation cannot be paralyzed and thus the mechanical stability for the intracellular recording is reduced. Thus, this kind of experiments has only been achieved in cats and in rats. However, the study of spinal motor systems could make a formidable leap if it was possible to perform similar experiments in normal and genetically modified mice.For technical reasons, the study of the spinal networks in mice has mostly been limited to neonatal in vitro preparations, where the motoneurons and the spinal networks are immature, the motoneurons are separated from their targets, and when studied in slices, the motoneurons are separated from most of their inputs. Until recently, only a few groups had managed to perform intracellular recordings of motoneurons in vivo2-4 , including our team who published a new preparation which allowed us to obtain very stable recordings of motoneurons in vivo in adult mice5,6. However, these recordings were obtained in paralyzed animals, i.e. without the possibility to record the force output of these motoneurons. Here we present an extension of this original preparation in which we were able to obtain simultaneous recordings of the electrophysiological properties of the motoneurons and of the force developed by their motor unit. This is an important achievement, as it allows us to identify the different types of motoneurons based on their force profile, and thereby revealing their function. Coupled with genetic models disturbing spinal segmental circuitry7-9, or reproducting human disease10,11, we expect this technique to be an essential tool for the study of spinal motor system. 相似文献
8.
Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein 总被引:7,自引:0,他引:7
The breast and ovarian cancer-specific tumor suppressor RING finger protein BRCA1 has been identified as an E3 ubiquitin (Ub) ligase through in vitro studies, which demonstrated that its RING finger domain can autoubiquitylate and monoubiquitylate histone H2A when supplied with Ub, E1, and UBC4 (E2). Here we report that the E3 ligase activity of the N-terminal 110 amino acid residues of BRCA1, which encodes a stable domain containing the RING finger, as well as that of the full-length BRCA1, was significantly enhanced by the BARD1 protein (residues 8-142), whose RING finger domain itself lacked Ub ligase activity in vitro. The results of mutagenesis studies indicate that the enhancement of BRCA1 E3 ligase activity by BARD1 depends on direct interaction between the two proteins. Using K48A and K63A Ub mutants, we found that BARD1 stimulated the formation of both Lys(48)- and Lys(63)-linked poly-Ub chains. However, the enhancement of BRCA1 autoubiquitylation by BARD1 mostly resulted in poly-Ub chains linked through Lys(63), which could potentially activate biological pathways other than BRCA1 degradation. We also found that co-expression of BRCA1 and BARD1 in living cells increased the abundance and stability of both proteins and that this depended on their ability to heterodimerize. 相似文献
9.
While it is widely appreciated that the denatured state of a protein is a heterogeneous conformational ensemble, there is still debate over how this ensemble changes with environmental conditions. Here, we use single-molecule chemo-mechanical unfolding, which combines force and urea using the optical tweezers, together with traditional protein unfolding studies to explore how perturbants commonly used to unfold proteins (urea, force, and temperature) affect the denatured-state ensemble. We compare the urea m-values, which report on the change in solvent accessible surface area for unfolding, to probe the denatured state as a function of force, temperature, and urea. We find that while the urea- and force-induced denatured states expose similar amounts of surface area, the denatured state at high temperature and low urea concentration is more compact. To disentangle these two effects, we use destabilizing mutations that shift the Tm and Cm. We find that the compaction of the denatured state is related to changing temperature as the different variants of acyl-coenzyme A binding protein have similar m-values when they are at the same temperature but different urea concentration. These results have important implications for protein folding and stability under different environmental conditions. 相似文献
10.
Enhancement of the innate immune response of bladder epithelial cells by Astragalus polysaccharides through upregulation of TLR4 expression 总被引:1,自引:0,他引:1
Xiaolin Yin Lei Chen Jianling Yang Zhiyan Yao Lin Wei Mingyuan Li 《Biochemical and biophysical research communications》2010,397(2):232-238
The innate host defenses at mucosal surfaces are critical in the early stages of urinary tract bacterial infection. Recent studies have shown that uroepithelial cells aid innate immune cells in fighting off infection, although the exact mechanism by which the uroepithilium participates in immunity remains unclear. TLR4 has been implicated to possess antimicrobial activities specific for bladder epithelial cells (BECs). TLR4 promotes secretion of IL-6 and IL-8, mediates inhibition of bladder epithelial cell (BEC) bacterial invasion, and mediates expulsion of uropathogenic Escherichia coli from BECs. In this study, cultured 5637 cells and Balb/C mice were treated with Astragalus polysaccharides (APS) against invading E. coli. To determine the contribution of TLR4 upregulation to immune response, TLR4 expression and bacterial colony numbers were monitored. After 24 h incubation, only 5637 cells treated with 500 μg/ml APS expressed higher levels of TLR4 compared with the untreated group. However, after 48 h, all 5637 cells treated by APS showed higher levels of TLR4 expression than the control cells. The TLR4 expression in the bladder and macrophages mice that received APS was higher than that in the controls. Bacterial colonization in 5637 cells and the bladders of mice treated with APS was significantly reduced compared with the controls. These results demonstrate that at certain concentrations, APS can induce increased TLR4 expression in vivo and in vitro. Further, TLR4 expression upregulation can enhance innate immunity during mucosal bacterial infection. The findings establish the use of APS to modulate the innate immune response of the urinary tract through TLR4 expression regulation as an alternative option for UTI treatment. 相似文献
11.
Tetsuya Kurosu Nan Wu Gaku Oshikawa Hiroyuki Kagechika Osamu Miura 《Apoptosis : an international journal on programmed cell death》2010,15(5):608-620
The BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myeloid leukemia (CML) and Philadelphia-chromosome
positive (Ph+) acute lymphoblastic leukemia (ALL). However, relapses with emerging imatinib-resistance mutations in the BCR/ABL
kinase domain pose a significant problem. Here, we demonstrate that nutlin-3, an inhibitor of Mdm2, inhibits proliferation
and induces apoptosis more effectively in BCR/ABL-driven Ton.B210 cells than in those driven by IL-3. Moreover, nutlin-3 drastically
enhanced imatinib-induced apoptosis in a p53-dependent manner in various BCR/ABL-expressing cells, which included primary
leukemic cells from patients with CML blast crisis or Ph+ ALL and cells expressing the imatinib-resistant E255K BCR/ABL mutant.
Nutlin-3 and imatinib synergistically induced Bax activation, mitochondrial membrane depolarization, and caspase-3 cleavage
leading to caspase-dependent apoptosis, which was inhibited by overexpression of Bcl-XL. Imatinib did not significantly affect
the nutlin-3-induced expression of p53 but abrogated that of p21. Furthermore, activation of Bax as well as caspase-3 induced
by combined treatment with imatinib and nutlin-3 was observed preferentially in cells expressing p21 at reduced levels. The
present study indicates that combined treatment with nutlin-3 and imatinib activates p53 without inducing p21 and synergistically
activates Bax-mediated intrinsic mitochondrial pathway to induce apoptosis in BCR/ABL-expressing cells. 相似文献
12.
Structural and functional characteristics of the motor proteins of the actomyosin motility system, myosins, which can be grouped into 15 classes, are presented in brief. The structure of the myosin molecule is considered: a conservative motor domain of the head with ATP- and actin-binding sites, a head segment associated with light chains, and a tail, which is variable in various myosins performing different functions. We address the progress in the studies of myosin functioning as a motor in the in vitroassay systems. Not only animal and prokaryotic organisms but also Characean algae and plant pollen tubes contributed considerably to these studies as sources of actin and myosin. Higher-plant myosins are characterized. The data are presented concerning the interaction between some myosin forms and other actin-binding proteins and, on the other hand, the phosphoinositol signal transduction pathway, the integral plasmalemmal proteins, and the proteins of the extracellular matrix. The most important idea formulated in the review is that a dynamic reorganization of the actin cytoskeleton is a structural basis for physiological processes in plants. 相似文献
13.
The fundamentals of the biological treatment of contaminated soils were investigated in bioreactors with the aim to optimize the processes of biological soil treatment in order to achieve the highest possible degree of degradation within the shortest period of time. Preinvestigations using test systems at different scales have provided information about the possibilities of enhancing the decomposition processes which are dependent on various factors, such as milieu conditions, additives, etc., that must be known before remedial actions are taken. The investigations made so far have shown that compost is a favourable additive when oil-contaminated soils are biologically treated. The degradation of contaminants can be enhanced by the addition of compost. This positive effect is attributed to various mechanisms. In this paper, results of a variety of test systems at different scales are presented. In test series, different amounts of biocompost were added to investigate the influence on the degradation of diesel fuel. It was demonstrated that by increasing the compost content – the cumulative O2 consumption caused by the degradation of the diesel fuel contaminants increased. It could be shown that the reduction of the diesel fuel contaminants in the soil was independent of the compost age and amounted to approximately 94% of the initial quantity. The addition of biocompost could also enhance the degradation of real contaminants. After a test period of 162 days in set-ups with compost addition, more than 75% of the lubricating oil contaminants disappeared, while less than 37% of the contaminants disappeared in set-ups without compost addition. Moreover, by the addition of compost, the formation of pellets during the dynamic treatment of soil materials could be reduced. 相似文献
14.
Tomonori Ueno Keisuke Tanaka Keiko Kaneko Yuki Taga Tetsutaro Sata Shinkichi Irie Shunji Hattori Kiyoko Ogawa-Goto 《The Journal of biological chemistry》2010,285(39):29941-29950
A coiled-coil microtubule-bundling protein, p180, was originally reported as a ribosome-binding protein on the rough endoplasmic reticulum (ER) and is highly expressed in secretory tissues. Recently, we reported a novel role for p180 in the trans-Golgi network (TGN) expansion following stimulated collagen secretion. Here, we show that p180 plays a key role in procollagen biosynthesis and secretion in diploid fibroblasts. Depletion of p180 caused marked reductions of secreted collagens without significant loss of the ER membrane or mRNA. Metabolic labeling experiments revealed that the procollagen biosynthetic activity was markedly affected following p180 depletion. Moreover, loss of p180 perturbs ascorbate-stimulated de novo biosynthesis mainly in the membrane fraction with a preferential secretion defect of large proteins. At the EM level, one of the most prominent morphological features of p180-depleted cells was insufficient ribosome association on the ER membranes. In contrast, the ER of control cells was studded with numerous ribosomes, which were further enhanced by ascorbate. Similarly biochemical analysis confirmed that levels of membrane-bound ribosomes were altered in a p180-dependent manner. Taken together, our data suggest that p180 plays crucial roles in enhancing collagen biosynthesis at the entry site of the secretory compartments by a novel mechanism that mainly involves facilitating ribosome association on the ER. 相似文献
15.
16.
Enhancement of the Efficiency of Secretion of Heterologous Lipase in Escherichia coli by Directed Evolution of the ABC Transporter System 总被引:1,自引:0,他引:1
Gyeong Tae Eom Jae Kwang Song Jung Hoon Ahn Yeon Soo Seo Joon Shick Rhee 《Applied microbiology》2005,71(7):3468-3474
The ABC transporter (TliDEF) from Pseudomonas fluorescens SIK W1, which mediated the secretion of a thermostable lipase (TliA) into the extracellular space in Escherichia coli, was engineered using directed evolution (error-prone PCR) to improve its secretion efficiency. TliD mutants with increased secretion efficiency were identified by coexpressing the mutated tliD library with the wild-type tliA lipase in E. coli and by screening the library with a tributyrin-emulsified indicator plate assay and a microtiter plate-based assay. Four selected mutants from one round of error-prone PCR mutagenesis, T6, T8, T24, and T35, showed 3.2-, 2.6-, 2.9-, and 3.0-fold increases in the level of secretion of TliA lipase, respectively, but had almost the same level of expression of TliD in the membrane as the strain with the wild-type TliDEF transporter. These results indicated that the improved secretion of TliA lipase was mediated by the transporter mutations. Each mutant had a single amino acid change in the predicted cytoplasmic regions in the membrane domain of TliD, implying that the corresponding region of TliD was important for the improved and successful secretion of the target protein. We therefore concluded that the efficiency of secretion of a heterologous protein in E. coli can be enhanced by in vitro engineering of the ABC transporter. 相似文献
17.
A fundamental strategy for organising connections in the nervous system is the formation of neural maps. Map formation has been most intensively studied in sensory systems where the central arrangement of axon terminals reflects the distribution of sensory neuron cell bodies in the periphery or the sensory modality. This straightforward link between anatomy and function has facilitated tremendous progress in identifying cellular and molecular mechanisms that underpin map development. Much less is known about the way in which networks that underlie locomotion are organised. We recently showed that in the Drosophila embryo, dendrites of motorneurons form a neural map, being arranged topographically in the antero-posterior axis to represent the distribution of their target muscles in the periphery. However, the way in which a dendritic myotopic map forms has not been resolved and whether postsynaptic dendrites are involved in establishing sets of connections has been relatively little explored. In this study, we show that motorneurons also form a myotopic map in a second neuropile axis, with respect to the ventral midline, and they achieve this by targeting their dendrites to distinct medio-lateral territories. We demonstrate that this map is “hard-wired”; that is, it forms in the absence of excitatory synaptic inputs or when presynaptic terminals have been displaced. We show that the midline signalling systems Slit/Robo and Netrin/Frazzled are the main molecular mechanisms that underlie dendritic targeting with respect to the midline. Robo and Frazzled are required cell-autonomously in motorneurons and the balance of their opposite actions determines the dendritic target territory. A quantitative analysis shows that dendritic morphology emerges as guidance cue receptors determine the distribution of the available dendrites, whose total length and branching frequency are specified by other cell intrinsic programmes. Our results suggest that the formation of dendritic myotopic maps in response to midline guidance cues may be a conserved strategy for organising connections in motor systems. We further propose that sets of connections may be specified, at least to a degree, by global patterning systems that deliver pre- and postsynaptic partner terminals to common “meeting regions.” 相似文献
18.
《Cell cycle (Georgetown, Tex.)》2013,12(20):3303-3306
Despite improvements in the therapeutic efficacy of rationally designed cancer treatment regimens, most cancers remain incurable once spread beyond their sites of origin. Failure to achieve sustained control or eradication of cancers arises in large part because a sub-population of quiescent “cancer stem cells” is insensitive to drugs targeting cell growth and replication and because defense mechanisms critical to survival of the normal cell also protect the cancer cell from cytotoxic injury. Global alteration of signal transduction by inhibition of serine/threonine dephosphorylation has recently been shown to markedly potentiate cancer cell killing by the DNA-methylating drug, temozolomide. Inhibition of the multifunctional protein phosphatase 2A appears to drive quiescent cancer cells into cycle and simultaneously inhibits cycle arrest, permitting cancer cell entry into mitosis despite the presence of chemotherapy induced DNA-damage. Absence of toxicity in animal models suggests that multi-site mutations in pathways regulating cell cycle in cancer cells make them more vulnerable than normal cells to large changes in the balance of phosphorylation-regulated signaling. Global modulation of the serine-threonine phospho-proteome may be a general method for enhancing the effectiveness of cytotoxic cancer therapy. 相似文献
19.
20.
Sarita Cândida Rabelo Carlos Eduardo Vaz Rossell George Jackson de Moraes Rocha Guido Zacchi 《Biotechnology progress》2012,28(5):1207-1217
Sugarcane bagasse was subjected to steam pretreatment impregnated with hydrogen peroxide. Analyses were performed using 23 factorial designs and enzymatic hydrolysis was performed at two different solid concentrations and with washed and unwashed material to evaluate the importance of this step for obtaining high cellulose conversion. Similar cellulose conversion were obtained at different conditions of pretreatment and hydrolysis. When the cellulose was hydrolyzed using the pretreated material in the most severe conditions of the experimental design (210°C, 15 min and 1.0% hydrogen peroxide), and using 2% (w/w) water‐insoluble solids (WIS), and 15 FPU/g WIS, the cellulose conversion was 86.9%. In contrast, at a milder pretreatment condition (190°C, 15 min and 0.2% hydrogen peroxide) and industrially more realistic conditions of hydrolysis (10% WIS and 10 FPU/g WIS), the cellulose conversion reached 82.2%. The step of washing the pretreated material was very important to obtain high concentrations of fermentable sugars. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012 相似文献