首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We show that Ca2+/calmodulin(CaM)-dependent protein kinase I (CaMKI) is directly inhibited by its S-glutathionylation at the Cys179. In vitro studies demonstrated that treatment of CaMKI with diamide and glutathione results in inactivation of the enzyme, with a concomitant S-glutathionylation of CaMKI at Cys179 detected by mass spectrometry. Mutagenesis studies confirmed that S-glutathionylation of Cys179 is both necessary and sufficient for the inhibition of CaMKI by diamide and glutathione. In transfected cells expressing CaMKI, treatment with diamide caused a reversible decrease in CaMKI activity. Cells expressing mutant CaMKI (179CV) proved resistant in this regard. Thus, our results indicate that the reversible regulation of CaMKI via its modification at Cys179 is an important mechanism in processing calcium signal transduction in cells.  相似文献   

3.
Tolvaptan, a selective vasopressin V2 receptor antagonist, is a new generation diuretic. Its clinical efficacy is in principle due to impaired vasopressin‐regulated water reabsorption via aquaporin‐2 (AQP2). Nevertheless, no direct in vitro evidence that tolvaptan prevents AQP2‐mediated water transport, nor that this pathway is targeted in vivo in patients with syndrome of inappropriate antidiuresis (SIAD) has been provided. The effects of tolvaptan on the vasopressin–cAMP/PKA signalling cascade were investigated in MDCK cells expressing endogenous V2R and in mouse kidney. In MDCK, tolvaptan prevented dDAVP‐induced increase in ser256‐AQP2 and osmotic water permeability. A similar effect on ser256‐AQP2 was found in V1aR ?/? mice, thus confirming the V2R selectively. Of note, calcium calibration in MDCK showed that tolvaptan per se caused calcium mobilization from the endoplasmic reticulum resulting in a significant increase in basal intracellular calcium. This effect was only observed in cells expressing the V2R, indicating that it requires the tolvaptan–V2R interaction. Consistent with this finding, tolvaptan partially reduced the increase in ser256‐AQP2 and the water permeability in response to forskolin, a direct activator of adenylyl cyclase (AC), suggesting that the increase in intracellular calcium is associated with an inhibition of the calcium‐inhibitable AC type VI. Furthermore, tolvaptan treatment reduced AQP2 excretion in two SIAD patients and normalized plasma sodium concentration. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of tolvaptan and underscore a novel effect in raising intracellular calcium that can be of significant clinical relevance.  相似文献   

4.
As a widespread and reversible post-translational modification of proteins, S-glutathionylation specifically generates the mixed disulfides between cysteine residues and glutathione, which regulates various biological processes including oxidative stress, nitrosative stress and signal transduction. The identification of proteins and specific sites that undergo S-glutathionylation is crucial for understanding the underlying mechanisms and regulatory effects of S-glutathionylation. Experimental identification of S-glutathionylation sites is laborious and time-consuming, whereas computational predictions are more attractive due to their high speed and convenience. Here, we developed a novel computational framework DeepGSH (http://deepgsh.cancerbio.info/) for species-specific S-glutathionylation sites prediction, based on deep learning and particle swarm optimization algorithms. 5-fold cross validation indicated that DeepGSH was able to achieve an AUC of 0.8393 and 0.8458 for Homo sapiens and Mus musculus. According to critical evaluation and comparison, DeepGSH showed excellent robustness and better performance than existing tools in both species, demonstrating DeepGSH was suitable for S-glutathionylation prediction. The prediction results of DeepGSH might provide guidance for experimental validation of S-glutathionylation sites and helpful information to understand the intrinsic mechanisms.  相似文献   

5.
6.
Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial–mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs.  相似文献   

7.
S-glutathionylation, the reversible formation of mixed disulfides between glutathione(GSH) and cysteine residues in proteins, is a specific form of post-translational modification that plays important roles in various biological processes, including signal transduction, redox homeostasis, and metabolism inside cells. Experimentally identifying S-glutathionylation sites is labor-intensive and time consuming, whereas bioinformatics methods provide an alternative way to this problem by predicting S-glutathionylation sites in silico. The bioinformatics approaches give not only candidate sites for further experimental verification but also bio-chemical insights into the mechanism of S-glutathionylation. In this paper, we firstly collect experimentally determined S-glutathionylated proteins and their corresponding modification sites from the literature, and then propose a new method for predicting S-glutathionylation sites by employing machine learning methods based on protein sequence data. Promising results are obtained by our method with an AUC (area under ROC curve) score of 0.879 in 5-fold cross-validation, which demonstrates the predictive power of our proposed method. The datasets used in this work are available at http://csb.shu.edu.cn/SGDB.  相似文献   

8.
9.
Abstract

Aquaporin (AQP) 1 and AQP 4 are members of the aquaporin water channel family that play an important role in reabsorption of water from the renal tubular fluid to concentrate urine. Studies of renal AQPs have been performed in human, rodents, sheep, dogs and horses. We studied nephron segment-specific expression of AQP 1 and AQP 4 using immunohistochemical staining on paraffin sections of bovine kidneys. AQP 1 was moderately expressed in endothelium of the cortical capillary network, vasa recta, and glomerular capillaries. AQP 4 was moderately expressed only in cytoplasm of epithelial cells in proximal tubules. We concluded that AQP 1 and AQP 4 in the bovine kidney showed some differences from other species in renal trans-epithelial water transport.  相似文献   

10.
Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that regulates store-operated calcium entry (SOCE). In SOCE, STIM1 activates Orai1-composed Ca2+ channels in the plasma membrane (PM) after ER stored Ca2+ depletion. S-Glutathionylation of STIM1 at Cys56 evokes constitutive SOCE in DT40 cells; however, the structural and biophysical mechanisms underlying the regulation of STIM1 by this modification are poorly defined. By establishing a protocol for site-specific STIM1 S-glutathionylation using reduced glutathione and diamide, we have revealed that modification of STIM1 at either Cys49 or Cys56 induces thermodynamic destabilization and conformational changes that result in increased solvent-exposed hydrophobicity. Further, S-glutathionylation or point-mutation of Cys56 reduces Ca2+ binding affinity, as measured by intrinsic fluorescence and far-UV circular dichroism spectroscopies. Solution NMR showed S-glutathionylated-induced perturbations in STIM1 are localized to the α1 helix of the canonical EF-hand, the α3 and α4 helices of the non-canonical EF-hand and α6 and α8 helices of the SAM domain. Finally, we designed an S-glutathiomimetic mutation that strongly recapitulates the structural, biophysical and functional effects within the STIM1 luminal domain and we envision to be another tool for understanding the effects of protein S-glutathionylation in vitro, in cellulo and in vivo.  相似文献   

11.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   

12.
Aquaporin 0 (AQP0) is the major intrinsic protein of the lens and its water permeability can be modulated by changes in pH and Ca2+. The Cataract Fraser (CatFr) mouse accumulates an aberrant AQP0 (AQP0-LTR) in sub-cellular compartments resulting in a congenital cataract. We investigated the interference of AQP0-LTR with normal function of AQP0 in three systems. First, we created a transgenic mouse expressing AQP0 and AQP0-LTR in the lens. Expression of AQP0 did not prevent the congenital cataract but improved the size and transparency of the lens. Second, we measured water permeability of AQP0 co-expressed with AQP0-LTR in Xenopus oocytes. A low expression level of AQP0-LTR decreased the water permeability of AQP0, and a high expression level eliminated its calcium regulation. Third, we studied trafficking of AQP0 and AQP0-LTR in transfected lens epithelial cells. At low expression level, AQP0-LTR migrated with AQP0 toward the cell membrane, but at high expression level, it accumulated in sub-cellular compartments. The deleterious effect of AQP0-LTR on lens development may be explained by lowering water permeability and abolishing calcium regulation of AQP0. This study provides the first evidence that calcium regulation of AQP0 water permeability may be crucial for maintaining normal lens homeostasis and development.  相似文献   

13.
测定了大耳猬血清及尿中多种无机离子和尿素氮等指标,并应用免疫组织化学方法观察了AQP1、AQP2在肾脏的表达.大耳猬血清钠、氯含量较高;而尿液中以钾、钠、氯及尿素氮含量较高.尿液中主要离子浓度高于血清,较为浓缩,尿素氮、钾排泄能力较强.AQP1免疫反应阳性表达于近曲小管上皮和髓袢细段,AQP2主要表达于集合管上皮细胞.因此,AQP1、AQP2可能在大耳猬肾脏水重吸收及尿液浓缩过程中具有重要作用.  相似文献   

14.
One mechanism proposed for reducing the risk of calcium renal stones is activation of the calcium-sensing receptor (CaR) on the apical membranes of collecting duct principal cells by high luminal calcium. This would reduce the abundance of aquaporin-2 (AQP2) and in turn the rate of water reabsorption. While evidence in cells and in hypercalciuric animal models supports this hypothesis, the relevance of the interplay between the CaR and AQP2 in humans is not clear. This paper reports for the first time a detailed correlation between urinary AQP2 excretion under acute vasopressin action (DDAVP treatment) in hypercalciuric subjects and in parallel analyzes AQP2-CaR crosstalk in a mouse collecting duct cell line (MCD4) expressing endogenous and functional CaR. In normocalciurics, DDAVP administration resulted in a significant increase in AQP2 excretion paralleled by an increase in urinary osmolality indicating a physiological response to DDAVP. In contrast, in hypercalciurics, baseline AQP2 excretion was high and did not significantly increase after DDAVP. Moreover DDAVP treatment was accompanied by a less pronounced increase in urinary osmolality. These data indicate reduced urinary concentrating ability in response to vasopressin in hypercalciurics. Consistent with these results, biotinylation experiments in MCD4 cells revealed that membrane AQP2 expression in unstimulated cells exposed to CaR agonists was higher than in control cells and did not increase significantly in response to short term exposure to forskolin (FK). Interestingly, we found that CaR activation by specific agonists reduced the increase in cAMP and prevented any reduction in Rho activity in response to FK, two crucial pathways for AQP2 translocation. These data support the hypothesis that CaR-AQP2 interplay represents an internal renal defense to mitigate the effects of hypercalciuria on the risk of calcium precipitation during antidiuresis. This mechanism and possibly reduced medulla tonicity may explain the lower concentrating ability observed in hypercalciuric patients.  相似文献   

15.
A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle   总被引:4,自引:0,他引:4  
Arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells. Its binding to Gs-coupled vasopressin V2 receptors increases cyclic AMP (cAMP) and subsequently elicits the redistribution of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane (AQP2 shuttle), thereby facilitating water reabsorption from primary urine. The AQP2 shuttle is a paradigm for cAMP-dependent exocytic processes. Using sections of rat kidney, the AQP2-expressing cell line CD8, and primary principal cells, we studied the role of the motor protein myosin Vb, its vesicular receptor Rab11, and the myosin Vb- and Rab11-binding protein Rab11-FIP2 in the AQP2 shuttle. Myosin Vb colocalized with AQP2 intracellularly in resting and at the plasma membrane in AVP-treated cells. Rab11 was found on AQP2-bearing vesicles. A dominant-negative myosin Vb tail construct and Rab11-FIP2 lacking the C2 domain (Rab11-FIP2-DeltaC2), which disrupt recycling, caused condensation of AQP2 in a Rab11-positive compartment and abolished the AQP2 shuttle. This effect was dependent on binding of myosin Vb tail and Rab11-FIP2-DeltaC2 to Rab11. In summary, we identified myosin Vb as a motor protein involved in AQP2 recycling and show that myosin Vb- and Rab11-FIP2-dependent recycling of AQP2 is an integral part of the AQP2 shuttle.  相似文献   

16.
To investigate the role of the mineralocorticoid receptor (MR) in renal ENaC-mediated sodium reabsorption, we have previously used the Cre-loxP system to generate mice with principal-cell specific MR ablation (MR(AQP2Cre) mice). To restrict Cre expression to principal cells, we have used the regulatory elements of the mouse aquaporin-2 (AQP2) gene to drive Cre expression. Since AQP2 is already expressed during renal development, MR ablation took place long before the analysis performed at the adult stage. To investigate whether the early onset of MR ablation affected the adult renal sodium handling, we developed a transgene expressing the CreER(T2) fusion protein under control of the regulatory elements of the AQP2 gene (AQP2CreER(T2)). Immunofluorescence revealed MR loss in the collecting duct (CD) and late connecting tubule after induction of MR ablation by tamoxifen in MR(AQP2CreERT2) mice that equals the MR loss in MR(AQP2Cre) mice. Surprisingly, tamoxifen-independent MR loss is observed in CDs of noninduced mutants without affecting circulating aldosterone levels. Under a low-salt diet, the induced ablation of MR at the adult stage recapitulates the renal sodium wasting observed in mice with constitutive early-onset MR ablation. The AQP2CreER(T2) transgene is a new tool for investigating in vivo the function of genes downstream of MR in renal ENaC-mediated sodium reabsorption by inducible somatic gene inactivation.  相似文献   

17.
S-glutathionylation, the covalent attachment of a glutathione (GSH) to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM) that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA). TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM) is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN) and human protein tyrosine phosphatase 1b (PTP1B). Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/), for identifying uncharacterized GSH substrate sites on the protein sequences.  相似文献   

18.
Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.  相似文献   

19.
The aquaporin (AQP)2 channel mediates the reabsorption of water in renal collecting ducts in response to arginine vasopressin (AVP) and hypertonicity. Here we show that AQP2 expression is induced not only by the tonicity-responsive enhancer binding protein (TonEBP)/nuclear factor of activated T cells (NFAT)5-mediated hypertonic stress response but also by the calcium-dependent calcineurin-NFATc pathway. The induction of AQP2 expression by the calcineurin-NFATc pathway can occur in the absence of TonEBP/NFAT5. Mutational and chromatin immunoprecipitation analyses revealed the existence of functional NFAT binding sites within the proximal AQP2 promoter responsible for regulation of AQP2 by NFATc proteins and TonEBP/NFAT5. Contrary to the notion that TonEBP/NFAT5 is the only Rel/NFAT family member regulated by tonicity, we found that hypertonicity promotes the nuclear translocation of NFATc proteins for the subsequent induction of AQP2 expression. Calcineurin activity was also found to be involved in the induction of TonEBP/NFAT5 expression by hypertonicity, thus further defining the signaling mechanisms that underlie the TonEBP/NFAT5 osmotic stress response pathway. The coordinate regulation of AQP2 expression by both osmotic stress and calcium signaling appears to provide a means to integrate diverse extracellular signals into optimal cellular responses. aquaporin; nuclear factor of activated T cells; tonicity-responsive enhancer binding protein; osmotic response  相似文献   

20.
Endothelial nitric-oxide synthase (eNOS) is a critical regulator of vascular homeostasis by generation of NO that is dependent on the cofactor tetrahydrobiopterin (BH4). When BH4 availability is limiting, eNOS becomes “uncoupled,” resulting in superoxide production in place of NO. Recent evidence suggests that eNOS uncoupling can also be induced by S-glutathionylation, although the functional relationships between BH4 and S-glutathionylation remain unknown. To address a possible role for BH4 in S-glutathionylation-induced eNOS uncoupling, we expressed either WT or mutant eNOS rendered resistant to S-glutathionylation in cells with Tet-regulated expression of human GTP cyclohydrolase I to regulate intracellular BH4 availability. We reveal that S-glutathionylation of eNOS, by exposure to either 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or glutathione reductase-specific siRNA, results in diminished NO production and elevated eNOS-derived superoxide production, along with a concomitant reduction in BH4 levels and BH4:7,8-dihydrobiopterin ratio. In eNOS uncoupling induced by BH4 deficiency, BCNU exposure further exacerbates superoxide production, BH4 oxidation, and eNOS activity. Following mutation of C908S, BCNU-induced eNOS uncoupling and BH4 oxidation are abolished, whereas uncoupling induced by BH4 deficiency was preserved. Furthermore, BH4 deficiency alone is alone sufficient to reduce intracellular GSH:GSSG ratio and cause eNOS S-glutathionylation. These data provide the first evidence that BH4 deficiency- and S-glutathionylation-induced mechanisms of eNOS uncoupling, although mechanistically distinct, are functionally related. We propose that uncoupling of eNOS by S-glutathionylation- or by BH4-dependent mechanisms exemplifies eNOS as an integrated redox “hub” linking upstream redox-sensitive effects of BH4 and glutathione with redox-dependent targets and pathways that lie downstream of eNOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号