首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone deacetylase (HDAC) inhibitions are known to elicit anticancer effects. We designed and synthesized several HDAC inhibitors. Among these compounds, compound 40 exhibited a more than 10-fold stronger inhibitory activity compared with that of suberoylanilide hydroxamic acid (SAHA) against each human HDAC isozyme in vitro (IC50 values of 40: HDAC1, 0.0038 μM; HDAC2, 0.0082 μM; HDAC3, 0.015 μM; HDAC8, 0.0060 μM; HDAC4, 0.058 μM; HDAC9, 0.0052 μM; HDAC6, 0.058 μM). The dose of the administered HDAC inhibitors that contain hydroxamic acid as the zinc-binding group may be reduced by 40. Because the carbostyril subunit is a time-tested structural component of drugs and biologically active compounds, 40 most likely exhibits good absorption, distribution, metabolism, excretion, and toxicity (ADMET). Thus, compound 40 is expected to be a promising therapeutic agent or chemical tool for the investigation of life process.  相似文献   

2.
Herein, we report the discovery of a series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies of these compounds led to the identification of the most potent compound, 3-(3-methoxybenzyl)-6-(1H-pyrrolo[2,3-b]pyridin-4-yl)thieno[2,3-d]pyrimidin-4(3H)-one (8k), which showed IC50 values of 0.004 μM and 0.001 μM against ROCK Ⅰ and ROCK Ⅱ, respectively. In vitro, 8k significantly reduced the phosphorylation level of ROCK downstream signaling protein and induce changes in cell morphology and migration. Overall, this study provides a promising lead compound for drug discovery targeting ROCKs.  相似文献   

3.
Histone deacetylases (HDACs) have been found to be biomarkers of cancers and the corresponding inhibitors have attracted much attention these years. Herein we reported a near-infrared fluorescent HDAC inhibitor based on vorinostat (SAHA) and a NIR fluorophore. This newly designed inhibitor showed similar inhibitory activity to SAHA against three HDAC isoforms (HDAC1, 3, 6). The western blot assay showed significant difference in compared with the negative group. When used as probe for further kinematic imaging, Probe 1 showed enhanced retention in tumor cells and the potential of HDAC inhibitors in drug delivery was firstly brought out. The cytotoxicity assay showed Probe 1 had some anti-proliferation activities with corresponding IC50 values of 9.20 ± 0.96 μM on Hela cells and 5.91 ± 0.57 μM on MDA-MB-231 cells. These results indicated that Probe 1 could be used as a potential NIR fluorescent in the study of HDAC inhibitors and lead compound for the development of visible drugs.  相似文献   

4.
By merging the critical pharmacophore of EGFR/HER2 and HDAC inhibitors into one compound, a novel series of EGFR, HER-2, and HDAC multitarget inhibitors were synthesized. Compounds 9al contained 4-anilinoquinazolines with C-6 triazole-linked long alkyl chains of hydroxamic acid and displayed excellent inhibition against these enzymes (compound 9d exhibited the best inhibitory potency on wild-type EGFR, HDAC1, and HDAC6 with IC50 values 0.12 nM, 0.72 nM and 3.2 nM individually). Furthermore, compounds 9b and 9d potently inhibited proliferation of five human cancer cell lines (with IC50 values between 0.49 and 8.76 μM). Further mechanistic study revealed that compound 9d also regulated the phosphorylation of EGFR and HER2 and histone H3 hyperacetylation on the cellular level and induced remarkable apoptosis in BT-474 cells. Therefore, our study suggested that a system network-based multi-target drug design strategy might provided an alternate drug design method, by taking into account the synergy effect of EGFR, HER-2 and HDAC.  相似文献   

5.
HDAC and CDK inhibitors have been demonstrated to be synergistically in suppressing cancer cell proliferation and inducing apoptosis. In this work, we incorporated the pharmacophore groups of HDACs and CDKs inhibitors into one molecule to design and synthesize a series of purin derivatives as HDAC/CDK dual inhibitors. The lead compound 6d, showing good HDAC1 and CDK2 inhibitory activity with IC50 values of 5.8 and 56 nM, respectively, exhibited attractive potency against several cancer cell lines in vitro. This work may lead to the discovery of a novel scaffold and potential dual HDAC/CDK inhibitors.  相似文献   

6.
Based on the roles of Raf1 and JNK1 in hepatocarcinoma development, scaffold-based drug design was employed to produce a series of compounds, which subsequently were synthesized and explored as potential dual inhibitors Raf1 and JNK1 kinases for anti-tumor treatment. The compound 1-(3-chloro-4-(6-ethyl-4-oxo-4H-chromen-2-yl)phenyl)-3-(4-chloro-phenyl)urea (3d) showed 66%, 67% and 13% inhibition rate at 50 μM against Raf1, JNK1 and p38-alpha, respectively, but no effect on ERK1 and ERK2, and inhibited the expression of pERK1/2 markedly and HepG2 cells proliferation with IC50 at 8.3 μM. Furthermore, 3d showed lower toxicity against normal liver cell-lines QSG7701 and HL7702. Molecular docking study further showed that 3d can fit into binding domain of JNK1 and Raf1. Our data suggested the activities of 3d were associated with dual inhibition of JNK1 and Raf1 kinases.  相似文献   

7.
We designed and synthesized a series of novel hybrid histone deacetylase inhibitors based on conjugation of benzamide-type inhibitors with either linear or cyclic peptides. Linear tetrapeptides (compounds 13 and 14), cyclic tetrapeptides (compounds 1 and 11), and heptanediamide–peptide conjugates (compounds 10, 12, 15 and 16) were synthesized through on-resin solid-phase peptide synthesis (SPPS). All compounds were found to be moderate HDAC1 and HDAC3 inhibitors, with IC50 values ranging from 1.3 μM to 532 μM. Interestingly, compound 15 showed 19-fold selectivity for HDAC3 versus HDAC1.  相似文献   

8.
A total of 15 novel benzimidazole derivatives were designed, synthesized and evaluated for their SIRT1 and SIRT2 inhibitory activity. All compounds showed better inhibition on SIRT2 as compared to SIRT1. Among these, compound 5j displayed the best inhibitory activity for SIRT1 (IC50 = 58.43 μM) as well as for SIRT2 (IC50 = 45.12 μM). Cell cytotoxicity assays also showed that compound 5j possesses good antitumor activity against two different cancer cell lines derived from breast cancer (MCF-7 and MDA-MB-468). A simple structure–activity-relationship (SAR) study of the newly synthesized benzimidazole derivatives was also discussed.  相似文献   

9.
Tuberculosis is a serious infectious disease caused by human pathogen bacteria Mycobacterium tuberculosis. Bacterial drug resistance is a very significant medical problem nowadays and development of novel antibiotics with different mechanisms of action is an important goal of modern medical science. Leucyl-tRNA synthetase (LeuRS) has been recently clinically validated as antimicrobial target. Here we report the discovery of small-molecule inhibitors of M. tuberculosis LeuRS. Using receptor-based virtual screening we have identified six inhibitors of M. tuberculosis LeuRS from two different chemical classes. The most active compound 4-{[4-(4-Bromo-phenyl)-thiazol-2-yl]hydrazonomethyl}-2-methoxy-6-nitro-phenol (1) inhibits LeuRS with IC50 of 6 μM. A series of derivatives has been synthesized and evaluated in vitro toward M. tuberculosis LeuRS. It was revealed that the most active compound 2,6-Dibromo-4-{[4-(4-nitro-phenyl)-thiazol-2-yl]-hydrazonomethyl}-phenol inhibits LeuRS with IC50 of 2.27 μM. All active compounds were tested for antimicrobial effect against M. tuberculosis H37Rv. The compound 1 seems to have the best cell permeability and inhibits growth of pathogenic bacteria with IC50 = 10.01 μM and IC90 = 13.53 μM.  相似文献   

10.
A series of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel HDACs inhibitors were designed, synthesized and evaluated. Most of these compounds displayed good to excellent inhibitory activities against HDAC1, 3, 6. The IC50 values of compound 10r against HDAC1, HDAC3, HDAC6 was 1.14 ± 0.03 nM, 3.56 ± 0.08 nM, 11.43 ± 0.12 nM. Compound 10r noticeably up-regulated the level of histone H3 acetylation compared to the SAHA. Most of the compounds showed the strong anti-proliferative activity against human cancer cell lines including RMPI8226 and HCT-116. The IC50 values of Compounds 10r and 10t against RPMI8226 was 2.39 ± 0.20 μM, 1.41 ± 0.44 μM, respectively, and the HCT-116 was sensitive to the compounds 10h, 10m, 10r, 10w with the IC50 values <1.9 μM.  相似文献   

11.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

12.
In our efforts to develop novel dual c-Met/VEGFR-2 inhibitors as potential anticancer agents, a series of 2-substituted-4-(2-fluorophenoxy) pyridine derivatives bearing pyrazolone scaffold were designed and synthesized. The cell proliferation assay in vitro demonstrated that most target compounds had inhibition potency on both c-Met and VEGFR-2, especially compound 9h, 12b and 12d. Based on the further enzyme assay in vitro, compound 12d was considered as the most promising one, the IC50 values of which were 0.11 μM and 0.19 μM for c-Met and VEGFR-2, respectively. Further molecular docking studies suggested a common mode of interaction at the ATP-binding site of c-Met and VEGFR-2, indicating that 12d was a potential compound for cancer therapy deserving further study.  相似文献   

13.
A series of novel 4,5-dihydropyrazole derivatives (3a3t) containing hydroxyphenyl moiety as potential V600E mutant BRAF kinase (BRAFV600E) inhibitors were designed and synthesized. Docking simulation was performed to insert compounds 3d (1-(5-(5-chloro-2-hydroxyphenyl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) and 3m (1-(3-(4-chlorophenyl)-5-(3,5-dibromo-2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) into the crystal structure of BRAFV600E to determine the probable binding model, respectively. Based on the preliminary results, compound 3d and 3m with potent inhibitory activity in tumor growth may be a potential anticancer agent. Results of the bioassays against BRAFV600E, MCF-7 human breast cancer cell line and WM266.4 human melanoma cell line all showed several compounds had potent activities IC50 value in low micromolar range, among them, compound 3d and compound 3m showed strong potent anticancer activity, which were proved by that 3d: IC50 = 1.31 μM for MCF-7 and IC50 = 0.45 μM for WM266.5, IC50 = 0.22 μM for BRAFV600E, 3m: IC50 = 0.97 μM for MCF-7 and IC50 = 0.72 μM for WM266.5, IC50 = 0.46 μM for BRAFV600E, which were comparable with the positive control Erlotinib.  相似文献   

14.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH2 to PGE2 and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC50 of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors.  相似文献   

15.
PPARγ and 11β-HSD1 are attractive therapeutic targets for type 2 diabetes. However, PPARγ agonists induce adipogenesis, which causes the side effect of weight gain, whereas 11β-HSD1 inhibitors prevent adipogenesis and may be beneficial for the treatment of obesity in diabetic patients. For the first time, we designed, synthesized a series of α-aryloxy-α-methylhydrocinnamic acids as dual functional agents which activate PPARγ and inhibit 11β-HSD1 simultaneously. The compound 11e exhibited the most potent inhibitory activity compared to that of the lead compound 2, with PPARγ (EC50 = 6.76 μM) and 11β-HSD1 (IC50 = 0.76 μM) in vitro. Molecular modeling study for compound 11e was also presented. Compound 11e showed excellent efficacy for lowering glucose, triglycerides, body fat, in well established mice and rats models of diabetes and obesity and had a favorable ADME profile.  相似文献   

16.
Novel indeno[1,2-d]thiazole hydroxamic acids were designed, synthesized, and evaluated for histone deacetylases (HDACs) inhibition and antiproliferative activities on tumor cell lines. Most of the tested compounds exhibited HDAC inhibition and antiproliferative activity against both MCF7 and HCT116 cells with GI50 values in the sub-micromolar range. Among them, compound 6o showed good inhibitory activity against pan-HDAC with IC50 value of 0.14 μM and significant growth inhibition on MCF7 and HCT116 cells with GI50 values of 0.869 and 0.535 μM, respectively.  相似文献   

17.
A lead compound 1, which inhibits the catalytic activity of PTK6, was selected from a chemical library. Derivatives of compound 1 were synthesized and analyzed for inhibitory activity against PTK6 in vitro and at the cellular level. Selected compounds were analyzed for cytotoxicity in human foreskin fibroblasts using MTT assays and for selectivity towards PTK members in HEK 293 cells. Compounds 20 (in vitro IC50 = 0.12 μM) and 21 (in vitro IC50 = 0.52 μM) showed little cytotoxicity, excellent inhibition of PTK6 in vitro and at the cellular level, and selectivity for PTK6. Compounds 20 and 21 inhibited phosphorylation of specific PTK6 substrates in HEK293 cells. Thus, we have identified novel PTK6 inhibitors that may be used as treatments for PTK6-positive carcinomas, including breast cancer.  相似文献   

18.
Sirtuins (SIRTs), class III HDAC (Histone deacetylase) family proteins, are associated with cancer, diabetes, and other age-related disorders. SIRT1 and SIRT2 are established therapeutic drug targets by regulating its function either by activators or inhibitors. Compounds containing indole moiety are potential lead molecules inhibiting SIRT1 and SIRT2 activity. In the current study, we have successfully synthesized 22 indole derivatives in association with an additional triazole moiety that provide better anchoring of the ligands in the binding cavity of SIRT1 and SIRT2. In-vitro binding and deacetylation assays were carried out to characterize their inhibitory effects against SIRT1 and SIRT2. We found four derivatives, 6l, 6m, 6n, and 6o to be specific for SIRT1 inhibition; three derivatives, 6a, 6d and 6k, specific for SIRT2 inhibition; and two derivatives, 6s and 6t, which inhibit both SIRT1 and SIRT2. In-silico validation for the selected compounds was carried out to study the nature of binding of the ligands with the neighboring residues in the binding site of SIRT1. These derivatives open up newer avenues to explore specific inhibitors of SIRT1 and SIRT2 with therapeutic implications for human diseases.  相似文献   

19.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

20.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号