共查询到12条相似文献,搜索用时 62 毫秒
1.
为了探明高山植物全缘叶绿绒蒿(Meconopsis integrifolia)的繁育系统特点和其对高山气候环境的繁殖适应特征,我们沿海拔梯度选择了5个样地(样地1(4 452 m)、样地2(4 215 m)、样地3(4 081 m)、样地4(3 841 m)、样地5(3 681 m))对其传粉生态学进行了连续2年的观察试验。结果发现,样地1、2的全缘叶绿绒蒿的单花寿命显著长于样地3、4和5。花开放早期柱头高于花药,之后花药不断伸长,并在开放中后期与柱头接触,说明全缘叶绿绒蒿具有不完全雌雄异位的花部特征。自然状态下,柱头可授能力持续期约8天(雌蕊先熟),但花药于开花第5天才散粉,花粉寿命约2天,说明全缘叶绿绒蒿为雌雄异熟,但存在一定的重叠期。人工授粉试验表明,全缘叶绿绒蒿自交部分亲和,且不存在无融合生殖现象。各样地中自然对照的结实率显著低于人工异交处理的结实率,说明自然状态下全缘叶绿绒蒿存在一定程度的传粉限制。传粉昆虫观察发现,样地1和2的传粉昆虫主要是蝇类,样地3、4和5的传粉昆虫主要是蝇类和蓟马(Thripidae spp.),蝇类在不同植株间的活动能够保证异花传粉结实,同时,蝇类和蓟马在花内的活动会引起"协助自交"。全缘叶绿绒蒿约65%的观察个体存在"自动自交"。蝇类在各样地的访花频率存在显著差异,样地1访花频率最低,样地2访花频率最高。各样地的结实由于异花传粉者的不足而受到传粉限制。两种不同类型的自交机制恰恰为该植物异花传粉者不足提供了一定程度的繁殖补偿。全缘叶绿绒蒿不分泌花蜜,当环境温度降低时,采取为昆虫提供保温庇护场所的方式来吸引传粉者。 相似文献
2.
藏药全缘叶绿绒蒿的化学成分研究 总被引:5,自引:0,他引:5
从藏药全缘叶绿绒蒿(Meconopsis integrifolia(Maxim.)Franch)全草乙醇提取物中分离得到六个化合物,分别鉴定为:普托品碱(protopine,1)、马齿苋酰胺E(Oleracin E,2)、木犀草素(luteolin,3)、二氢槲皮素(dihydro quercetin,4)、洋芹素(apigenin,5)和小麦黄素(tricin,6),其中,化合物2~6为首次从该植物中分离得到. 相似文献
3.
青藏高原物种丰富且属于气候变化敏感区,研究气候变化对青藏高原物种的潜在分布影响,对于该区域物种多样性保护具有重要意义。该研究以一级濒危藏药植物全缘叶绿绒蒿为研究对象,利用加权平均算法(weighted average algorithm, WAA)构建随机森林(RF)、灵活判别分析(FDA)及人工神经网络(ANN)的集成模型,同时对比分析了WAA模型和不同生态位模型的预测精度。最后利用WAA模型预测了全缘叶绿绒蒿在当前(1970~2000年平均)和未来(2041~2060年平均)气候情景下的潜在分布,其中未来气候考虑了2种“共享社会经济路径”(SSP2-45和SSP5-85)。结果显示:(1) WAA模型的预测表明,基于RF、FDA和ANN的集成模型的AUC值为0.926,在AUC值最高RF模型的基础上提高了3%,在FDA和ANN模型的AUC值的基础上均提高了5%。(2) WAA模型确定,全缘叶绿绒蒿的潜在分布对年降水量和最暖季降水量最为敏感,其次是最热月份最高气温,同时对最湿月份降水量以及等温性表现出较低的敏感性。(3)当前全缘叶绿绒蒿潜在分布区主要分布在甘肃西南部、青海东部至南部、四川西部和西北部、云南西北部和东北部、西藏东部。(4)未来气候变化下青藏高原全缘叶绿绒蒿潜在分布预测表明,在2050年SSP2-45情景下,全缘叶绿绒蒿的潜在分布区大小与当前潜在分布区大小基本相同,但整体向西北方向高海拔高纬度地区迁移;在SSP5-85情景下,全缘叶绿绒蒿的潜在分布区明显收缩,且向西北高纬度高海拔地区延伸的趋势更加明显。 相似文献
4.
露蕊乌头(毛茛科)不同海拔居群的传粉生态学 总被引:10,自引:0,他引:10
对青藏高原东北部两个不同海拔地点(互助,2460m和海北,3200m)的露蕊乌头Aconitum gymnandrum的传粉生态学进行了比较研究。研究结果表明高海拔居群的单花花期、雄性期持续时间、雌性期持续时间比低海拔长。露蕊乌头不存在无融合生殖现象,尽管高度自交亲和,但产生种子必须依赖传粉媒介。熊蜂是露蕊乌头的主要传粉昆虫,两个居群均存在传粉限制。熊蜂取食花蜜为主,在同一个花序上的访问顺序以由下向上为主,但在互助居群和海北居群有3.9%和2.7%的访花是由上向下进行的。统计发现有37.7%和29.3%的访问行为发生在同一植株内;因此,同株异花传粉造成的自交在露蕊乌头中仍然不能避免。低海拔居群的熊蜂种类和访花频率均高于高海拔居群,但自然状态下两个居群的结实率并没有显著差异。高海拔露蕊乌头居群可能具有较长的柱头持续时间,从而补偿了由于访花频率低带来的结实率降低。 相似文献
5.
提出顶点及顶点相互作用矢量的概念,并将该矢量用于复杂样本的分子结构表征。采用逐步回归结合统计检测对变量进行筛选后,再用多元线性回归建立了定量结构-色谱保留(QSRR)关系的7变量模型,模型的建模计算值复相关系数(R)为0.990,标准偏差(SD)为1.325;留一法(LOO)交互检验复相关系数(RCV)为0.983,标准偏差(SDCV)为1.696。结果表明该矢量具有较强的分子结构表达能力,模型具有良好的估计能力与稳定性。 相似文献
6.
采用胶带粘取叶表皮法,利用光学显微镜观测不同海拔高度下全缘叶绿绒蒿叶片的表皮毛、气孔及表皮细胞结构特征,探讨全缘叶绿绒蒿叶表皮特征与海拔高度的关系。结果表明,随着海拔高度增加,全缘叶绿绒蒿叶片上、下表皮毛密度、气孔密度和表皮细胞密度逐渐增加;气孔器及表皮细胞的长度、宽度和面积逐渐减小;表皮细胞的形态随着海拔升高由无规则形向多边形变化,垂周壁由波状向弓形或平直变化。全缘叶绿绒蒿叶表皮结构在不同海拔高度下表现出的差异,可能是植物长期在高原生态环境下的综合反应,以结构上的变化来适应对高海拔地区的环境特点,为进一步研究高海拔地区植物的适应性提供一定依据。 相似文献
7.
为探究全缘叶绿绒蒿( Meconopsis integrifolia )的花内热量来源和温度调节功能,该研究选择在全缘叶绿绒蒿的巴朗山居群,对其进行遮阴及去瓣处理,并采用红外热像仪监测全缘叶绿绒蒿的花内微环境温度日变化及花器官温度,用环境温度计监测环境温度。结果表明:(1)太阳照射显著提高全缘叶绿绒蒿花内微环境温度和花器官温度,全缘叶绿绒蒿的热量主要来源于太阳辐射。花内微环境昼夜温差显著低于环境昼夜温差,全缘叶绿绒蒿的花具有温度调节功能。(2)白天环境温度较高时,太阳照射显著提高全缘叶绿绒蒿花内微环境温度,花瓣会降低花内微环境温度; 夜间环境温度较低时,花瓣闭合会提高花内微环境温度; 花瓣闭合运动降低了花内微环境昼夜温差,产生了保温效果。(3)在太阳照射下,花器官温度差异显著,雌雄蕊温度显著高于花瓣温度,且花器官温度由雌蕊柱头中心点向外递减,全缘叶绿绒蒿能有效调控花器官各部位的温度。综上认为,全缘叶绿绒蒿的花内热量来源于太阳辐射,主要通过花瓣闭合运动降低花内微环境昼夜温差并能在太阳照射下调节各花器官的温度实现温度调节功能。 相似文献
8.
从传统藏药五脉绿绒蒿(Meconopsis quintuplinervia Regel.)全草乙醇提取物中分离得到6个化合物,利用波谱方法鉴定为8,9-dihydroxy-1,5,6,10b-tetrahydro-2H-pyrrolo[2,1-a]isoquinolin-3-one(1)、甲氧基淡黄巴豆亭碱(o-methylflavi nantine,2)、黑水罂粟碱(amurine,3)、tricin(4)、木犀草素(luteolin,5)以及β-谷甾醇(β-sitosterol,6)。其中化合物1,4为首次从该植物中分得。 相似文献
9.
该研究对不同基原绿绒蒿的化学成分差异与品种分类基础进行了分析。采用超高效液相色谱-四级杆-飞行时间质谱(UPLC-Q-TOF-MS)对多刺绿绒蒿、总状绿绒蒿、五脉绿绒蒿、全缘绿绒蒿、红花绿绒蒿共49个批次绿绒蒿药材进行检测,ESI源正、负离子扫描模式,将数据结果导入PeakView 1.2软件,以Formula Finder、Mass Calculators、XIC manager等功能及二级碎片裂解规律进行定性分析,并将定性结果建立已知成分筛查表。将数据代入SIMCA-P 14.1软件中,进行可视化处理,构建主成分分析(principal component analysis,PCA)及偏最小二乘法-判别分析(partial least squares discrimination-analysis,PLS-DA)数学模型。结果共检测并分析出75种化学成分;PCA及PLS-DA结果表明从所含化学成分的种类角度出发,多刺绿绒蒿和总状绿绒蒿所含的化学成分种类基本一致,能较好聚集,其他3个基原的绿绒蒿所含化学成分种类差异较大。该研究根据现有文献报道,对绿绒蒿属植物化学成分进行汇总,结合质谱裂解规律对各样品中的化学成分进行推测与对比,为绿绒蒿的品种分类鉴别奠定了基础。 相似文献
10.
Luis Abdala‐Roberts Denis Marrufo‐Zapata Gerardo Arceo‐Gómez Victor Parra‐Tabla 《Plant Species Biology》2014,29(1):25-33
Multiple factors determine plant reproductive success and their influence may vary spatially. This study addresses several factors influencing female reproductive success in three populations of Ruellia nudiflora, specifically we: (i) determine if fruit set is pollen‐limited and if pollinator visitation rates are related to this condition; (ii) estimate fruit set via autonomous self‐pollination (AS) and relate it to the magnitude of herkogamy; and (iii) evaluate if fruit abortion is a post‐pollination mechanism that determines the magnitude of pollen limitation. At each site we marked 35 plants, grouped as: unmanipulated control (C) plants subjected to open pollination, plants manually cross‐pollinated (MP), and plants excluded from pollinators and only able to self‐pollinate autonomously (AS). Fruit set was greater for MP relative to C plants providing evidence for pollen limitation, while a tendency was observed for lower fruit abortion of MP relative to C plants suggesting that fruit set is influenced not only by pollen delivery per se, but also by subsequent abortion. In addition, although pollinator visits varied significantly among populations, the magnitude of pollen limitation did not, suggesting that pollinator activity was not relevant in determining pollen limitation. Finally, fruit set tended to decrease with the degree of herkogamy for AS plants, but this result was inconclusive. These findings have contributed to identify which factors influence reproductive success in populations of R. nudiflora, with potentially relevant implications for population genetic structure and mating system evolution of this species. 相似文献
11.
Background and Aims
The establishment of plant populations in novel environments may generate pronounced shifts in floral traits and plant mating systems, particularly when pollinators are scarce. In this study, floral morphology and mating system functioning are compared between recently established and older populations of the annual plant Blackstonia perfoliata that occur in different pollinator environments.Methods
Hand-pollination and emasculation experiments were conducted to assess the extent of pollinator-mediated pollen deposition and pollen limitation, and the contribution of autonomous selfing to total seed production. Detailed measurements of key floral traits were performed to compare the flower morphology and mating system functioning between plants from both pollination environments.Key Results
Pollinator-mediated pollen deposition was about twice as low in the recently colonized and pollinator-poor environment compared with the old and pollinator-rich sites, but total seed set was little affected by any type of pollen limitation. The contribution of autonomous selfing to total seed production was higher in the pollinator-poor sites than in the pollinator-rich sites (index of reproductive assurance = 0·56 and 0·17, respectively), and seed production was only poorly affected by selfing, whereas in the pollinator-rich populations selfing reduced total reproductive output by about 40 % compared with outcross pollination. Plants originating from pollinator-poor environments produced smaller flowers that showed significantly lower levels of dichogamy (i.e. protogyny) and herkogamy. These reductions resulted in a 2-fold higher capacity for autonomous selfing under pollinator-free conditions (index of autonomous selfing = 0·81 and 0·41 in plants originating from the pollinator-poor and pollinator-rich environment, respectively).Conclusions
The results illustrate that plant populations colonizing novel environments can differ markedly in floral morphology and mating system functioning. Due to a temporal shift in the male phase, the breeding system of B. perfoliata shifted from delayed selfing under pollinator-rich conditions towards competing selfing in recently established populations, providing greater reproductive assurance when pollinators and/or reproductive partners are limited. 相似文献12.
Disanthus cercidifolius Maxim. var. longipes H.T. Chang usually has two inflorescences growing in opposite directions in the axillae, but occasionally three inflorescences
grow paratactically. The typical flowering process could be divided into 4 periods: “Pre-dehiscence”, “Initial dehiscence”, “Full dehiscence” and “Withering”. Both the natural population and the planted population had a flowering peak of 15–35 days after the first flower bloomed.
There were significant differences between the time courses of flowering of the two populations. Out-crossing is the main
breeding system in this species. And autogamy decreases the risk of reproductive failure of this species. The main insect
pollinators of D. cercidifolius var. longipes are Episyrphus balteatus de Geer, Scaptodrosophila coracina Kikkawa and Peng, Polistes olivaceus de Geer, Apis cerana Fabricius, Nezara viridula L. and Coccinella septempunctata L., and so on. Among the insects, S. coracina and E. balteatus are the most important and efficient pollinators, but others are inefficient pollinators. Though wind pollination is not
efficient, it guarantees reproduction when insect pollinators are not available. “Mass flowering” is an adaptive behavior and reproductive strategy of this species, and “few fruiting” could be caused by the lack of pollinators. 相似文献