首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A novel synthetic route and anti-HIV activity evaluation of a new series of 2-(4-(2,4-dibromophenyl)-1,2,3-thiadiazol-5-ylthio)acetamide (TTA) derivatives are described. Bioactivity assay indicated that most of the title compounds showed good activities against HIV-1. In particular, compound 7c displayed the most potent anti-HIV-1 activity (EC50 = 36.4 nM), inhibiting HIV-1 replication in MT-4 cells more effectively than NVP (by sevenfold) and DLV (by eightfold). The preliminary structure–activity relationships (SAR) of the newly synthesized congeners are discussed, and molecular modeling of compound 7c in complex with HIV-1 RT is described, allowing rationalization of some SAR conclusions.  相似文献   

3.
4.
5.
6.
A series of novel N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl)acetamide derivatives has been synthesized. All the newly synthesized compounds were evaluated for their anti-HIV activity using MTT method. Most of these compounds showed moderate to potent activity against wild-type HIV-1 with an EC50 ranging from >7 EC50 [μg/ml] to <100 EC50 [μg/ml]. Among them, N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl)acetamide 6v was identified as the most promising compound (EC50 = <7 μg/ml). Among all the compounds, three compounds 6m, 6v and 6u have been exhibits potent anti-HIV activity against MT-4 cells.  相似文献   

7.
A series of 2-(1-aryl-1H-imidazol-2-ylthio)acetamide [imidazole thioacetanilide (ITA)] derivatives were synthesized and evaluated as potent inhibitors of human immunodeficiency virus type-1 (HIV-1). Among them, the most potent HIV-1 inhibitors were 4a5 (EC50 = 0.18 μM), and 4a2 (EC50 = 0.20 μM), which were more effective than the lead compound L1 (EC50 = 2.053 μM) and the reference drugs nevirapine and delavirdine. The preliminary structure–activity relationship (SAR) of the newly synthesized congeners is discussed.  相似文献   

8.
9.
A series of new diarylpyrimidines (DAPYs) characterized by a halogen atom on the methylene linker between wing I and the central pyrimidine ring was synthesized and evaluated for their anti-HIV activity in MT-4 cell cultures. The two most promising compounds 7f and 7g showed excellent activity against wild-type HIV-1 with low nanomolar EC50 values of 0.005 and 0.009 μM, respectively, which were comparable to or more potent than all the reference drugs zidovudine (AZT), lamivudine (3TC), nevirapine (NEV), efavirenz (EFV), delaviridine (DLV) and etravirine (ETV). In particular, 7g also displayed strong activity against the double mutant strain 103N + 181C with an EC50 value of 8.2 μM. The preliminary structure–activity relationship (SAR) and molecular docking analysis of this new series of CHX-DAPYs were also investigated.  相似文献   

10.
A series of C6-rigid S-DABO analogs characterized by a substituted benzoyl group at C6 position of the pyrimidine ring has been synthesized and biological evaluation as NNRTIs against wild-type HIV-1 strain IIIB, double RT mutant (K103N + Y181C) strain RES056 as well as HIV-2 strain ROD in MT-4 cell cultures. Most of the compounds exhibited moderate antiviral activities. Among them, compound 7q displayed the highest anti-HIV-1 activity with an EC50 value of 0.26 μM and a selectivity index (SI) of 541. The preliminary structure–activity relationship (SAR) of these new S-DABOs was investigated, the target RT was confirmed and docking study was performed.  相似文献   

11.
A novel series of 3-benzyloxy-linked pyrimidinylphenylamine derivatives (8a8s) was designed, synthesized and evaluated for their in vitro anti-HIV activity in MT-4 cell cultures. Most of the compounds inhibited wild-type (wt) HIV-1 replication in the lower micromolar concentration range (EC50 = 0.05–35 μM) with high selectivity index (SI) values (ranged from 10 to >4870). In particular, 8h and 8g displayed excellent antiretroviral activity against wt HIV-1 with low cytotoxicity (EC50 = 0.07 μM, CC50 >347 μM, SI >4870; EC50 = 0.05 μM, CC50 = 42 μM, SI = 777, respectively), comparable to that of the marked drug nevirapine (EC50 = 0.113 μM, CC50 >15 μM, SI >133). In order to confirm the binding target, 8h was selected to perform the anti-HIV-1 RT assay. Additionally, preliminary structure activity relationship (SAR) analysis and molecular docking studies of newly synthesized compounds were also discussed, as well as the predicted physicochemical properties.  相似文献   

12.
A series of CR2(OH)-diarylpyrimidine derivatives (CR2(OH)-DAPYs) featuring a hydrophobic group at CH(OH) linker between wing I and the central pyrimidine were synthesized and evaluated for their anti-HIV activity in MT-4 cell cultures. All the target compounds except for compound 3k displayed inhibitory activity against HIV-1 wild-type with EC50 values ranging from 7.21 ± 1.99 to 0.067 ± 0.006 μM. Among them, compound 3d showed the most potent anti-HIV-1 activity (EC50 = 0.067 ± 0.006 μM, SI > 592), which was approximately 2-fold more potent than the reference drugs nevirapine (NVP) and delaviridine (DLV) in the same assay. In addition, the binding modes with HIV-1 RT and the preliminary SAR studies of these new derivatives were also investigated.  相似文献   

13.
14.
Hepatitis C virus (HCV) infection is one of the major health problems worldwide. If left untreated, it leads to liver cirrhosis, liver cancer and death. Herein, we report synthesis and anti-HCV activity of a new class of pyrimidine nucleosides possessing a 4′-carboxymethyl (916, 21 and 23) or 4′-carboxamide function (1719 and 24). Among these, 1012 (EC50 = 33.1–42.4 μM), 14 and 21 (EC50 = 43.4–59.5 μM) exhibited potent activity in HCV-1a replicon cells without any toxicity to parent Huh-7 cells (CC50 = >829–1055 μM). The anti-HCV activities demonstrated by this unusual class of compounds were superior to that of ribavirin (EC50 = 81.9 μM). Further, the most active analog, 12, was found to interact synergistically with ribavirin to inhibit HCV RNA replication.  相似文献   

15.
16.
A novel series of acetamide-substituted derivatives and two prodrugs of doravirine were designed and synthesized as potent HIV-1 NNRTIs by employing the structure-based drug design strategy. In MT-4 cell-based assays using the MTT method, it was found that most of the new compounds exhibited moderate to excellent inhibitory potency against the wild-type (WT) HIV-1 strain with a minimum EC50 value of 54.8?nM. Among them, the two most potent compounds 8i (EC50?=?59.5?nM) and 8k (EC50?=?54.8?nM) displayed robust activity against WT HIV-1 with double-digit nanomolar EC50 values, being superior to lamivudine (3TC, EC50?=?12.8?μM) and comparable to doravirine (EC50?=?13?nM). Besides, 8i and 8k shown moderate activity against the double RT mutant (K103N?+?Y181C) HIV-1 RES056 strain. The HIV-1 RT inhibition assay further validated the binding target. Molecular simulation of the representative compounds was employed to provide insight on their structure-activity relationships (SARs) and direct future design efforts. Finally, the aqueous solubility and chemical stability of the prodrugs 9 and 10 were investigated in detail.  相似文献   

17.
A series of novel 2-(phenylaminocarbonylmethylthio)-6-(2,6-dichlorobenzyl)-pyrimidin-4(3H)-ones have been designed and synthesized. All of the new compounds were evaluated for their anti-HIV activities in MT-4 cells. Most of these new compounds showed moderate to potent activities against wild-type HIV-1 with an EC50 ranging from 4.48 μM to 0.18 μM. Among them, 2-[(4-bromophenylamino)carbonylmethylthio]-6-(2,6-dichlorobenzyl)-5-methylpyrimidin-4(3H)-one 4b3 was identified as the most promising compound (EC50 = 0.18 ± 0.06 μM, CC50 >243.56 μM, SI >1326). The structure–activity relationship (SAR) of these new congeners is discussed.  相似文献   

18.
19.
In our continuous efforts to identify novel potent HIV-1 NNRTIs, a novel class of 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives were rationally designed, synthesized and evaluated for their anti-HIV activities in MT4 cell cultures. Biological results showed that most of the tested compounds displayed excellent activity against wild-type HIV-1 with a wide range of EC50 values from 5.98 to 0.07 μM. Among the active compounds, 5a was found to be the most promising analogue with an EC50 of 0.07 μM against wild-type HIV-1 and very high selectivity index (SI, 3999). Compound 5a was more effective than the reference drugs nevirapine (by 2-fold) and delavirdine (by 2-fold). In order to further confirm their binding target, an HIV-1 RT inhibitory assay was also performed. Furthermore, SAR analysis among the newly synthesized compounds was discussed and the binding mode of the active compound 5a was rationalized by molecular modeling studies.  相似文献   

20.
By a scaffold elongation strategy, a series of (Z)-3-(5-(3-benzyl-4-oxo-2-thioxothiazolidinylidene)methyl)-N-(3-carboxy-4-hydroxy)phenyl-2,5-dimethylpyrroles and related derivatives with a linear multi-aromatic-ring skeleton were designed, synthesized, and evaluated in HIV-1 gp41 and cellular assays. Among them, the most active compounds, 12e, 12g, and 12k with a one-carbon linker (n = 1) between the rhodanine (C) and phenyl (D) rings, exhibited very promising inhibitory potency with IC50 values of 1.8–2.6 μM and EC50 values of 0.3–1.5 μM against gp41 6-HB formation and HIV-1 replication in MT-2 cells, respectively. Additionally, they were almost equally effective against both T20-sensitive and resistant strains. The related SAR studies and molecular modeling results provided potential for further developing a new class of non-peptide small molecular fusion inhibitors targeting the HIV-1 gp41.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号