首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of Na+, K+-ATPase α3 subunit and synaptosomal membrane Na+, K+-ATPase activity were analyzed after administration of ouabain and endobain E, respectively commercial and endogenous Na+, K+-ATPase inhibitors. Wistar rats received intracerebroventricularly ouabain or endobain E dissolved in saline solution or Tris–HCl, respectively or the vehicles (controls). Two days later, animals were decapitated, cerebral cortex and hippocampus removed and crude and synaptosomal membrane fractions were isolated. Western blot analysis showed that Na+, K+-ATPase α3 subunit expression increased roughly 40% after administration of 10 or 100 nmoles ouabain in cerebral cortex but remained unaltered in hippocampus. After administration of 10 μl endobain E (1 μl = 28 mg tissue) Na+, K+-ATPase α3 subunit enhanced 130% in cerebral cortex and 103% in hippocampus. The activity of Na+, K+-ATPase in cortical synaptosomal membranes diminished or increased after administration of ouabain or endobain E, respectively. It is concluded that Na+, K+-ATPase inhibitors modify differentially the expression of Na+, K+-ATPase α3 subunit and enzyme activity, most likely involving compensatory mechanisms.  相似文献   

2.
Ouabain activation of the phosphatase associated with Na+,K+-ATPase is a time-dependent process which is stimulated by ATP and other nucleotides. Further stimulation by Na+ is observed under certain conditions. The stimulatory effect of ATP was found to be due to an increase in the affinity of the enzyme for ouabain. The time required for maximal ouabain activation to be achieved was decreased by ATP and further decreased by ATP + Na+.These conditions for maximal activation by ouabain are similar to those required for maximal ouabain binding and suggest that the same ouabain site is responsible for activation of Mg2+-dependent phosphatase and for inhibition of Na+,K+-ATPase and K+-phosphatase.  相似文献   

3.
It is not known whether ouabain injected into the kidney in vivo is bound exclusively to the (Na+ + K+)-ATPase and whether the reduction of sodium pumping capacity is large enough to account for the reduction in sodium reabsorption. In the present study on dogs the total amount of parenchymal ouabain was therefore estimated and the specific renal binding compared to the reduction in (Na+ + K+)-ATPase activity. Ouabain, 120 nmol/kg body weight, was injected into the renal artery in vivo reducing the (Na+ + K+)-ATPase activity by 3lmost 80%. After nephrectomy, tissue ouabain could be quantified by radioimmunoassay after heating the homogenate to 70°C for 30 min; negligible amounts were detectable without heating. No correlation between ouabain binding and tissue volume, protein content, DNA content or Mg2+-ATPase content could be found when comparing the following four fractions of the kidney: outer cortex, inner cortex, outer medulla and papilla. For the whole kidney, mean parenchymal tissue concentration of ouabain equalled 0.58 ± 0.03 μmol/100 g wet tissue. Only 21.3 ± 1.2% of the ouabain was confined to the outer medulla corresponding to 54 ± 4 nmol giving a tissue concentration of 1.08 ± 0.05 μmol/100 g wet tissue. The renal ouabain concentrations were highly correlated to the reduction in (Na+ + K+)-ATPase activity, giving a ratio between the reduction in hydrolysis rate and bound ouabain (turnover number) of 6105 min?1 which is close to the value of 7180 min?1 found by in vitro Scatchard analysis. No ouabain seems to be bound to other tissue components than the (Na+ + K+)-ATPase and the present method is therefore a simple way of measuring the number of inhibited (Na+ + K+)-ATPase molecules after in vivo injection of ouabain.  相似文献   

4.
AimsWe sought to determine the mechanisms of an increase in Ca2+ level in caveolae vesicles in pulmonary smooth muscle plasma membrane during Na+/K+-ATPase inhibition by ouabain.Main methodsThe caveolae vesicles isolated by density gradient centrifugation were characterized by electron microscopic and immunologic studies and determined ouabain induced increase in Na+ and Ca2+ levels in the vesicles with fluorescent probes, SBFI-AM and Fura2-AM, respectively.Key findingsWe identified the α2β1 and α1β1 isozymes of Na+/K+-ATPase in caveolae vesicles, and only the α1β1 isozyme in noncaveolae fraction of the plasma membrane. The α2-isoform contributes solely to the enzyme inhibition in the caveolae vesicles at 40 nM ouabain. Methylisobutylamiloride (Na+/H+-exchange inhibitor) and tetrodotoxin (voltage-gated Na+-channel inhibitor) pretreatment prevented ouabain induced increase in Na+ and Ca2+ levels. Ouabain induced increase in Ca2+ level was markedly, but not completely, inhibited by KB-R7943 (reverse-mode Na+/Ca2+-exchange inhibitor) and verapamil (L-type Ca2+-channel inhibitor). However, pretreatment with tetrodotoxin in conjunction with KB-R7943 and verapamil blunted ouabain induced increase in Ca2+ level in the caveolae vesicles, indicating that apart from Na+/Ca+-exchanger and L-type Ca2+-channels, “slip-mode conductance” of Na+ channels could also be involved in this scenario.SignificanceInhibition of α2 isoform of Na+/K+-ATPase by ouabain plays a crucial role in modulating the Ca2+ influx regulatory components in the caveolae microdomain for marked increase in (Ca2+)i in the smooth muscle, which could be important for the manifestation of pulmonary hypertension.  相似文献   

5.
Summary Antibodies which were raised against highly purified membrane-bound (Na+–K+)-ATPase from the outer medulla of rat kidneys inhibit the (Na+–K+)-ATPase activity up to 95%. The antibody inhibition is reversible. The time course of enzyme inhibition and reactivation is biphasic in semilogarithmic plots.In the purified membrane-bound (Na+–K+)-ATPase negative cooperativity was observed (a) for the ATP dependence of the (Na+–K+)-ATPase activity (n=0.86), (b) for the ATP binding to the enzyme (n=0.58), and (c) for the ouabain inhibition of the (Na+–K+)-ATPase activity (n=0.77). By measuring the Na+ dependence of the (Na+–K+-ATPase reaction, a positive homotropic cooperativity (n=1.67) was found.As reactivation of the antibody-inhibited enzyme proceeds very slowly (t 0.5=5.2hr), it was possible to measure characteristics of the antibody-(Na+–K+)-ATPase complex: The antibodies exerted similar effects on the ATP dependence of the (Na+–K+)-ATPase reaction and on the ATP binding of the enzyme.V max of the (Na+–K+)-ATPase reaction and the number of ATP binding sites were reduced whileK 0.5 ATP for the (Na+–K+)-ATPase activity and for the ATP binding were increased by the antibodies. The Hill coefficients for the ATP binding and for the ATP dependence of the enzyme activity were not significantly altered by the antibodies. The antibodies increased theK 0.5 value for the Na+ stimulation of the (Na+–K+)-ATPase activity, but they did not alter the homotropic interactions between the Na+-binding sites. The negative cooperativity which was observed for the ouabain inhibition of the (Na+–K+)-ATPase activity was abolished by the antibodies.The data are tentatively explained by the following model: The antibodies bind to the (Na+–K+)-ATPase from the inner membrane side, reduce the ATP binding symmetrically at the ATP binding sites and reduce thereby also the (Na+–K+)-ATPase activity of the enzyme. The antibodies may inhibit the ATP binding by a direct interaction or by means of a conformational change at the ATP binding sites. This may possibly also lead to the alteration of the Na+ dependence of the (Na+–K+)-ATPase activity and to the observed alteration of the dose response to the ouabain inhibition.  相似文献   

6.
Internalization of the Na+/K+-ATPase (the Na+ pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na+/K+-ATPase molecule or more generally by the disruption of cation homeostasis (Na+, K+, Ca2+) due to the partial inhibition of active Na+ and K+ transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K+-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na+/K+-ATPase complex.  相似文献   

7.
We have constructed and characterized transgenic Drosophila lines with modified Na+,K+-ATPase activity. Using a temperature dependent promoter from the hsp70 gene to drive expression of wild-type α subunit cDNA, we can conditionally rescue bang-sensitive paralysis and ouabain sensitivity of a Drosophila Na+,K+-ATPase α subunit hypomorphic mutant, 2206. In contrast, a mutant α subunit (αD369N) leads to increased bang-sensitive paralysis and ouabain sensitivity. We can also generate temperature dependent phenotypes in wild-type Drosophila using the same hsp70 controlled α transgenes. Ouabain sensitivity was as expected, however, both bang sensitive paralysis or locomotor phenotypes became more severe regardless of the type of α subunit transgene. Using the Gal4-UAS system we have limited expression of α transgenes to cell types that normally express a particular Drosophila Na+,K+-ATPase β (Nervana) subunit isoform (Nrv1 or 2). The Nrv1-Gal4 driver results in lethality while the Nrv2-Gal4 driver shows reduced viability, locomotor function and uncontrolled wing beating. These transgenic lines will be useful for disrupting function in a broad range of cell types.  相似文献   

8.
The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase.  相似文献   

9.
By means of a Sephadex G-50 column and anionic exchange HPLC a cerebral cortex soluble fraction (II-E) which highly inhibits neuronal Na+-K+-ATPase activity has been previously obtained. Herein, II-E properties are compared with those of the cardenolide ouabain, the selective and specific Na+, K+-ATPase inhibitor. It was observed that alkali treatment destroyed II-E but not ouabain inhibitory activity. II-E presented a maximal absorbance at 265 nm both at pH 7 and pH 2 which diminished at pH 10. Ouabain showed a maximum at 220 nm which was not altered by alkalinization. II-E was not retained in a C-18 column, indicating its hydrophilic nature, whereas ouabain presented a 26-min retention time in reverse phase HPLC. Therefore, it is concluded that the inhibitory factor present in II-E is structurally different to ouabain.  相似文献   

10.
Cat soleus motor nerve terminals, after high frequency conditioning, generate a post-tetanic repetition (PTR) which leads to a post-tetanic (PTP) of the muscle response. This property enables quantitative assessment of enhancement or depression of this nerve terminal excitability in vivo. The present study focuses on ionic mechanisms underlying the PTRs produced in this neuromuscular system either by high frequency stimulation or edrophonium. Ouabain was used as a specific probe for inhibition of Na+–K+ ATPase and its known consequences on Na+ and Ca2+ translocation. Ouabain pretreatment doubled the duration over which single stimuli, following either high frequency or edrophonium conditioning produced PTR. Ouabain in the doses used had no effectper se but as a function of dose augmented the frequency dependent responses. This pointed to Na+ loading of nerve terminals via high frequency stimulation plus ouabain inhibition of Na+–K+ ATPase. Ouabain potentiation of PTR responses evidently depends on exchange of intra-terminal sodium for external calcium. Thus, calcium entry blockers, Mn2+, and Co2+ suppressed or abolished the potentiations both before and after ouabain. Diphenylhydantoin, a Na+ and Ca2+ blocker, acted similarly. The effects of stimulation frequency, ouabain and the sequence of events leading to PTR in the soleus neuromuscular system appeared in general no different from those derived from the many in vitro microphysiologic studies of this phenomenon. Thus, EPPs were augmented and prolonged. It was concluded that intracellular Ca2+ is critical for regulating the stability of systems in which repetitive firing is both a normal and abnormal function.Special issue dedicated to Dr. Sidney Udenfriend  相似文献   

11.
De novo mutations in ATP1A3, the gene encoding the α3-subunit of Na+,K+-ATPase, are associated with the neurodevelopmental disorder Alternating Hemiplegia of Childhood (AHC). The aim of this study was to determine the functional consequences of six ATP1A3 mutations (S137Y, D220N, I274N, D801N, E815K, and G947R) associated with AHC. Wild type and mutant Na+,K+-ATPases were expressed in Sf9 insect cells using the baculovirus expression system. Ouabain binding, ATPase activity, and phosphorylation were absent in mutants I274N, E815K and G947R. Mutants S137Y and D801N were able to bind ouabain, although these mutants lacked ATPase activity, phosphorylation, and the K+/ouabain antagonism indicative of modifications in the cation binding site. Mutant D220N showed similar ouabain binding, ATPase activity, and phosphorylation to wild type Na+,K+-ATPase. Functional impairment of Na+,K+-ATPase in mutants S137Y, I274N, D801N, E815K, and G947R might explain why patients having these mutations suffer from AHC. Moreover, mutant D801N is able to bind ouabain, whereas mutant E815K shows a complete loss of function, possibly explaining the different phenotypes for these mutations.  相似文献   

12.
Binding to Na+,K+-ATPase, cardiotonic steroids (CTS) activate intracellular signaling cascades that affect gene expression and regulation of proliferation and apoptosis in cells. Ouabain is the main CTS used for studying these processes. The effects of other CTS on nervous tissue are practically uncharacterized. Previously, we have shown that ouabain affects the activation of mitogen-activated protein kinases (MAP kinases) ERK1/2, p38, and JNK. In this study, we compared the effects of digoxin and bufalin, which belong to different subclasses of CTS, on primary culture of rat cortical cells. We found that CTS toxicity is not directly related to the degree of Na+,K+-ATPase inhibition, and that bufalin and digoxin, like ouabain, are capable of activating ERK1/2 and p38, but with different concentration and time profiles. Unlike bufalin and ouabain, digoxin did not decrease JNK activation after long-term incubation. We concluded that the toxic effect of CTS in concentrations that inhibit less than 80% of Na+,K+-ATPase activity is related to ERK1/2 activation as well as the complex profile of MAP kinase activation. A direct correlation between Na+,K+-ATPase inhibition and the degree of MAP kinase activation is only observed for ERK1/2. The different action of the three CTS on JNK and p38 activation may indicate that it is associated with intracellular signaling cascades triggered by protein–protein interactions between Na+,K+-ATPase and various partner proteins. Activation of MAP kinase pathways by these CTS occurs at concentrations that inhibit Na+,K+-ATPase containing the α1 subunit, suggesting that these signaling cascades are realized via α1. The results show that the signaling processes in neurons caused by CTS can differ not only because of different inhibitory constants for Na+,K+-ATPase.  相似文献   

13.
The involvement of membrane (Na+ + K+)-ATPase (Mg2+-dependent, (Na+ + K+)-activated ATP phosphohydrolase, E.C. 3.6.1.3) in the oxygen consumption of rat brain cortical slices was studied in order to determine whether (Na+ + K+)-ATPase activity in intact cells can be estimated from oxygen consumption. The stimulation of brain slice respiration with K+ required the simultaneous presence of Na+. Ouabain, a specific inhibitor of (Na+ + K+)-ATPase, significantly inhibited the (Na+ + K+)-stimulation of respiration. These observations suggest that the (Na+ + K+)-stimulation of brain slice respiration is related to ADP production as a result of (Na+ + K+)-ATPase activity. However, ouabain also inhibited non-K+-stimulated respiration. Additionally, ouabain markedly reduced the stimulation of respiration by 2,4-dinitrophenol in a high (Na+ + K+)-medium. Thus, ouabain depresses brain slice respiration by reducing the availability of ADP through (Na+ + K+)-ATPase inhibition and acts additionally by increasing the intracellular Na+ concentration. These studies indicate that the use of ouabain results in an over-estimation of the respiration related to (Na+ + K+)-ATPase activity. This fraction of the respiration can be estimated more precisely from the difference between slice respiration in high Na+ and K+ media and that in choline, K+ media. Studies were performed with two (Na+ + K+)-ATPase inhibitors to determine whether administration of these agents to intact rats would produce changes in brain respiration and (Na+ + K+)-ATPase activity. The intraperitoneal injection of digitoxin in rats caused an inhibition of brain (Na+ + K+)-ATPase and related respiration, but chlorpromazine failed to alter either (Na+ + K+)-ATPase activity or related respiration.  相似文献   

14.
Summary Simultaneous measurements of transepithelial potential difference (PD) and net water flux were made in the stripped intestine of seawater eels, and the effects of ouabain on these two parameters were examined in normal Ringer solution or under a chloride concentration gradient. Ouabain reduced the serosa-negative PD and the net water flux in normal Ringer solution with a linear relationship between the PD and the net water flux. Removal of K+ from the Ringer solution on both serosal and mucosal sides also reduced the PD and the net water flux to approximately zero. On the other hand, blocking the Na+–K+ pump by ouabain, K+-free or Na+-free Ringer solution increased the diffusion potential for Cl. Inhibition of Cl transport and increment in Cl permeability by ouabain occurred almost simultaneously. It is likely, therefore, that Cl transport as well as Cl permeability is dependent on Na+–K+ pump activity. A possible mechanism of dependence of Cl transport on the Na+–K+ pump is discussed in relation to the increment in Cl permeability.  相似文献   

15.
To investigate the involvement of K+ efflux in apoptotic cell shrinkage, we monitored efflux of the K+ congener,86 Rb+, and cell volume during CD95-mediated apoptosis in Jurkat cells. An anti-CD95 antibody caused apoptosis associated with intracellular GSH depletion, a significant increase in 86Rb+ efflux, and a decrease in cell volume compared with control cells. Preincubating Jurkat cells with Val-Ala-Asp-chloromethylketone (VAD-cmk), an inhibitor of caspase proteases, prevented the observed 86Rb+ efflux and cell shrinkage induced by the anti- CD95 antibody. A wide range of inhibitors against most types of K+ channels could not inhibit CD95-mediated efflux of86 Rb+, however, the uptake of86 Rb+ by Jurkat cells was severely compromised when treated with anti-CD95 antibody. Uptake of86 Rb+ in Jurkat cells was sensitive to ouabain (a specific Na+/K+-ATPase inhibitor), demonstrating Na+/K+-ATPase dependent K+ uptake. Ouabain induced significant86 Rb+ efflux in untreated cells, as well as it seemed to compete with86 Rb+ efflux induced by the anti-CD95 antibody, supporting a role for Na+/K+-ATPase in the CD95-mediated86 Rb+ efflux. Ouabain treatment of Jurkat cells did not cause a reduction in cell volume, although together with the anti-CD95 antibody, ouabain potentiated CD95-mediated cell shrinkage. This suggests that the observed inhibition of Na++/K+-ATPase during apoptosis may also facilitate apoptotic cell shrinkage.  相似文献   

16.
Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+–K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+–K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+–K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+–K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL.  相似文献   

17.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

18.
Abstract

Cardiotonic steroids (CTS) are steroidal drugs, processed from the seeds and dried leaves of the genus Digitalis as well as from the skin and parotid gland of amphibians. The most commonly known CTS are ouabain, digoxin, digoxigenin and bufalin. CTS can be used for safer medication of congestive heart failure and other related conditions due to promising pharmacological and medicinal properties. Ouabain isolated from plants is widely utilized in in vitro studies to specifically block the sodium potassium (Na+/K+-ATPase) pump. For checking, whether ouabain derivatives are robust inhibitors of Na+/K+-ATPase pump, molecular docking simulation was performed between ouabain and its derivatives using YASARA software. The docking energy falls within the range of 8.470?kcal/mol to 7.234?kcal/mol, in which digoxigenin was found to be the potential ligand with the best docking energy of 8.470?kcal/mol. Furthermore, pharmacophore modeling was applied to decipher the electronic features of CTS. Molecular dynamics simulation was also employed to determine the conformational properties of Na+/K+-ATPase-ouabain and Na+/K+-ATPase-digoxigenin complexes with the plausible structural integrity through conformational ensembles for 100?ns which promoted digoxigenin as the most promising CTS for treating conditions of congestive heart failure patients.  相似文献   

19.
[3H]Ouabain binding in frog and toad urinary bladder was investigated by short-circuit current (SCC), scintillation counting and authoradiographic techniques. SCC data and analysis of tissue digests following serosal exposure to ouabain showed that ouabain binding and inhibition of Na+ transport was completely reversible in toad bladder whereas, in frog bladder, [3H] ouabain was tightly bound and Na+ transport remained suppressed even after a 60-min washout. Mucosal exposure of frog bladder to [3H]ouabain or serosal exposure after preincubation with unlabeled ouabain led to a marked reduction in binding. Specificity of binding was assessed further by adjusting the concentration of cecrtain (Na+?K+)-ATPase ligands (K+, ATP) to levels known to reduce ouabain binding. High K+ concentrations and depletion of endogenous ATP by incubation under anoxic conditions resulted in a significant drop in [3H]ouabain binding. Autoradiographic analysis showed that grains are localized primarily to the basolateral plasma membranes of the granular cells, providing direct morphological evidence for the location of Na+ pumps at these sites. Although autoradiographs did not provide sufficient resolution to rule out unequivocally ouabain binding to the mitochondria-rich cell, morphological evidence suggests that grain densities are significatly higher between adjacent granular cells than between granular cell-mitochondria-rich cell interfaces.  相似文献   

20.
To examine the effects of chronic ouabain treatment on blood pressure (BP), sodium excretion, and renal dopamine D1 receptor level, male Sprague-Dawley (SD) rats were treated with ouabain (27.8 μg kg−1 d−1) intraperitoneally for 5 weeks, and systolic blood pressure (SBP) were recorded weekly. After 5 weeks, sodium excretion and dopamine D1 receptor agonist fenoldopam-mediated natriuresis were measured, and the expression and phosphorylation levels of the renal cortical dopamine D1 receptor were confirmed by Western blot analysis. The effects of ouabain on fenoldopam-mediated inhibition of Na+-K+-ATPase activity were determined by colorimetric assays in human proximal tubular epithelial cells (HK-2 cells). After 5 weeks, the SBP in ouabain group was significantly higher than that in the control group (P < 0.01), but the sodium excretion and renal cortical D1 receptor expression levels were reduced, and D1 receptor phosphorylation levels were increased after ouabain treatment. Intravenous administration of fenoldopam caused an increased sodium excretion in control rats, but failed to induce natriuresis in ouabain-treated rats. In addition, fenoldopam induced a dose–respone (10−9 to 10−6 M) inhibition of Na+-K+-ATPase activity in HK-2 cells,but these effects were significantly diminished in HK-2 cells pretreated with nanomolar concentration of ouabain for 5 days (P < 0.01). We propose that the ouabain-induced reduction of the renal dopamine D1 receptor function serves as a mechanism responsible for sodium retention, and this contributes to the hypertension induced by chronic ouabain treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号