首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Key to understanding the epidemiology and pathogenesis of prion diseases, including chronic wasting disease (CWD) of cervids, is determining the mode of transmission from one individual to another. We have previously reported that saliva and blood from CWD-infected deer contain sufficient infectious prions to transmit disease upon passage into naïve deer. Here we again use bioassays in deer to show that blood and saliva of pre-symptomatic deer contain infectious prions capable of infecting naïve deer and that naïve deer exposed only to environmental fomites from the suites of CWD-infected deer acquired CWD infection after a period of 15 months post initial exposure. These results help to further explain the basis for the facile transmission of CWD, highlight the complexities associated with CWD transmission among cervids in their natural environment, emphasize the potential utility of blood-based testing to detect pre-clinical CWD infection, and could augur similar transmission dynamics in other prion infections.  相似文献   

3.

Background/Aims

Arthropod-borne pathogens are transmitted into a unique intradermal microenvironment that includes the saliva of their vectors. Immunomodulatory factors in the saliva can enhance infectivity; however, in some cases the immune response that develops to saliva from prior uninfected bites can inhibit infectivity. Most rodent reservoirs of Yersinia pestis experience fleabites regularly, but the effect this has on the dynamics of flea-borne transmission of plague has never been investigated. We examined the innate and acquired immune response of mice to bites of Xenopsylla cheopis and its effects on Y. pestis transmission and disease progression in both naïve mice and mice chronically exposed to flea bites.

Methods/Principal Findings

The immune response of C57BL/6 mice to uninfected flea bites was characterized by flow cytometry, histology, and antibody detection methods. In naïve mice, flea bites induced mild inflammation with limited recruitment of neutrophils and macrophages to the bite site. Infectivity and host response in naïve mice exposed to flea bites followed immediately by intradermal injection of Y. pestis did not differ from that of mice infected with Y. pestis without prior flea feeding. With prolonged exposure, an IgG1 antibody response primarily directed to the predominant component of flea saliva, a family of 36–45 kDa phosphatase-like proteins, occurred in both laboratory mice and wild rats naturally exposed to X. cheopis, but a hypersensitivity response never developed. The incidence and progression of terminal plague following challenge by infective blocked fleas were equivalent in naïve mice and mice sensitized to flea saliva by repeated exposure to flea bites over a 10-week period.

Conclusions

Unlike what is observed with many other blood-feeding arthropods, the murine immune response to X. cheopis saliva is mild and continued exposure to flea bites leads more to tolerance than to hypersensitivity. The immune response to flea saliva had no detectable effect on Y. pestis transmission or plague pathogenesis in mice.  相似文献   

4.
Memory CD4+ T cells are preferentially infected by HIV-1 compared to naïve cells. HIV-1 fusion and entry is a dynamic process in which the cytoskeleton plays an important role by allowing virion internalization and uncoating. Here, we evaluate the role of the cortical actin in cell-to-cell transfer of virus antigens and infection of target CD4+ T cells. Using different actin remodeling compounds we demonstrate that efficiency of HIV-internalization was proportional to the actin polymerization of the target cell. Naïve (CD45RA+) and memory (CD45RA−) CD4+ T cells could be phenotypically differentiated by the degree of cortical actin density and their capacity to capture virus. Thus, the higher cortical actin density of memory CD4+ T cells was associated to increased efficiency of HIV-antigen internalization and the establishment of a productive infection. Conversely, the lower cortical actin density in naïve CD4+ T cells restricted viral antigen transfer and consequently HIV-1 infection. In conclusion, the cortical actin density differentially affects the susceptibility to HIV-1 infection in naïve and memory CD4+ T cells by modulating the efficiency of HIV antigen internalization.  相似文献   

5.
There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.  相似文献   

6.
The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.  相似文献   

7.
8.
Circulating human IgM expressing memory B cells have been incompletely characterized. Here, we compared the phenotype and in vitro functional response (capacity to proliferate and differentiate to antibody secreting cells) in response to CpG and a cytokine cocktail (IL-2, IL-6, and IL-10) of sorted naïve B cells, IgM memory B cells and isotype-switched circulating memory B cells. Compared to naïve B cells, IgM memory B cells had lower integrated mean fluorescence intensity (iMFI) of BAFF-R, CD38, CD73, and IL-21R, but higher iMFI of CD95, CD11c, TLR9, PD-1, and CD122. Compared to switched memory B cells, IgM memory B cells had higher iMFI of BAFF-R, PD-1, IL-21R, TLR9, and CD122, but lower iMFI of CD38, CD95, and CD73. Four days after receiving the CpG/cytokine cocktail, higher frequencies of IgM than switched memory B cells—and these in turn greater than naïve cells—proliferated and differentiated to antibody secreting cells. At this time point, a small percentage (median of 7.6%) of stimulated IgM memory B cells changed isotype to IgG. Thus, among the heterogeneous population of human circulating IgM memory B cells a subset is capable of a rapid functional response to a CpG/cytokine stimulus in vitro.  相似文献   

9.
In systemic sclerosis (SSc), dermal capillaries are progressively lost with consequent chronic tissue hypoxia insufficiently compensated by angiogenesis. Clinical studies reported that intravenous cyclophosphamide (CYC) may improve SSc-related peripheral microvascular damage. Recently, we showed that CYC treatment may normalize SSc sera-induced abnormalities in endothelial cell-matrix interactions. Our objective was to evaluate in vitro the effects of sera from treatment-naïve or CYC-treated SSc patients on dermal blood microvascular endothelial cell (dMVEC) angiogenesis, migration, proliferation and apoptosis. dMVECs were challenged with sera from 21 SSc patients, treatment-naïve (n = 8) or under CYC treatment (n = 13), and 8 healthy controls. Capillary morphogenesis on Geltrex matrix was significantly reduced upon challenge with sera from naïve SSc patients compared with healthy controls. When dMVECs were challenged with sera from CYC-treated SSc patients, their angiogenic capacity was comparable to that of cells treated with healthy sera. Wound healing capacity and chemotaxis in Boyden chamber were both significantly decreased in the presence either of naïve or CYC-treated SSc sera compared with healthy sera. WST-1 assay revealed that cell proliferation was significantly decreased in dMVECs challenged with sera from naïve SSc patients compared with healthy sera. Conversely, dMVEC proliferation was not impaired in the presence of sera from CYC-treated SSc patients. Accordingly, the percentage of TUNEL-positive apoptotic dMVECs was significantly higher in the presence of sera from naïve SSc patients than healthy controls, while CYC-treated SSc sera did not induce dMVEC apoptosis. Levels of the angiostatic mediators endostatin, pentraxin 3, angiostatin and matrix metalloproteinase-12 were all significantly elevated in sera from naïve SSc patients compared with sera from both healthy controls and CYC-treated SSc patients. In SSc, CYC treatment might boost angiogenesis and consequently improve peripheral microangiopathy through the normalization of the endothelial cell-matrix interactions, reduction of endothelial cell apoptosis and rebalance of dysregulated angiostatic factors.  相似文献   

10.
T-lymphocytes and B-lymphocytes are key players in allergic asthma, with B-lymphocytes producing antigen-specific immunoglobulins E (IgE). We used a mouse model of chemical-induced asthma and transferred B-lymphocytes from sensitized animals into naïve wild type mice, B-lymphocyte knock-out (B-KO) mice or severe combined immunodeficiency (SCID) mice. On days 1 and 8, BALB/c mice were dermally sensitized with 0.3% toluene diisocyanate (TDI) (20µl/ear). On day 15, mice were euthanized and the auricular lymph nodes isolated. B-lymphocytes (CD19+) were separated from the whole cell suspension and 175,000 cells were injected in the tail vein of naïve wild type, B-KO or SCID mice. Three days later, the mice received a single oropharyngeal challenge with 0.01% TDI (20µl) or vehicle (acetone/olive oil (AOO)) (controls). Airway reactivity to methacholine and total and differential cell counts in the bronchoalveolar lavage (BAL) fluid were measured 24 hours after challenge. B-lymphocytes of AOO or TDI-sensitized mice were characterized for the expression of surface markers and production of cytokines. We found that transfer of B-cells obtained from mice dermally sensitized to toluene diisocyanate (TDI) into naïve wild type mice, B-KO mice or SCID mice led, within three days, to an acute asthma-like phenotype after an airway challenge with TDI. This response was specific and independent of IgE. These B-lymphocytes showed antigen presenting capacities (CD80/CD86 and CD40) and consisted of B effector (Be)2- (IL-4) and Be1-lymphocytes (IFN-γ). The transferred B-lymphocytes were visualized near large airways, 24 hours after TDI challenge. Thus, B-lymphocytes can provoke an asthmatic response without the action of T-lymphocytes and without major involvement of IgE.  相似文献   

11.
Plasmodium falciparum malaria remains one of the most serious health problems globally and a protective malaria vaccine is desperately needed. Vaccination with attenuated parasites elicits multiple cellular effector mechanisms that lead to Plasmodium liver stage elimination. While granule-mediated cytotoxicity requires contact between CD8+ effector T cells and infected hepatocytes, cytokine secretion should allow parasite killing over longer distances. To better understand the mechanism of parasite elimination in vivo, we monitored the dynamics of CD8+ T cells in the livers of naïve, immunized and sporozoite-infected mice by intravital microscopy. We found that immunization of BALB/c mice with attenuated P. yoelii 17XNL sporozoites significantly increases the velocity of CD8+ T cells patrolling the hepatic microvasculature from 2.69±0.34 μm/min in naïve mice to 5.74±0.66 μm/min, 9.26±0.92 μm/min, and 7.11±0.73 μm/min in mice immunized with irradiated, early genetically attenuated (Pyuis4-deficient), and late genetically attenuated (Pyfabb/f-deficient) parasites, respectively. Sporozoite infection of immunized mice revealed a 97% and 63% reduction in liver stage density and volume, respectively, compared to naïve controls. To examine cellular mechanisms of immunity in situ, naïve mice were passively immunized with hepatic or splenic CD8+ T cells. Unexpectedly, adoptive transfer rendered the motile CD8+ T cells from immunized mice immotile in the liver of P. yoelii infected mice. Similarly, when mice were simultaneously inoculated with viable sporozoites and CD8+ T cells, velocities 18 h later were also significantly reduced to 0.68±0.10 μm/min, 1.53±0.22 μm/min, and 1.06±0.26 μm/min for CD8+ T cells from mice immunized with irradiated wild type sporozoites, Pyfabb/f-deficient parasites, and P. yoelii CS280–288 peptide, respectively. Because immobilized CD8+ T cells are unable to make contact with infected hepatocytes, soluble mediators could potentially play a key role in parasite elimination under these experimental conditions.  相似文献   

12.
Systemic lupus erythematosus (SLE) is characterized by prominent autoinflammatory tissue damage associated with impaired removal of dying cells and DNA. Self DNA-containing immune complexes are able to activate both innate and adaptive immune responses and play an important role in the maintenance and exacerbation of autoimmunity in SLE. In this study, we used DNA from lymphocytes that have undergone activation-induced cell death (ALD-DNA) and analyzed its role on the activation and differentiation of B cells from normal BALB/c mice as well as lupus-prone MRL+/+ and MRL/lpr mice. We found that ALD-DNA directly increased the expression of costimulatory molecules and the survival of naïve B cells in vitro. Although ALD-DNA alone had little effect on the proliferation of naïve B cells, it enhanced LPS-activated B cell proliferation in vitro and in vivo. In addition, ALD-DNA increased plasma cell numbers and IgG production in LPS-stimulated cultures of naïve B cells, in part via enhancing IL-6 production. Importantly, B cells from lupus mice were hyperresponsive to ALD-DNA and/or LPS relative to normal control B cells in terminal plasma cell differentiation, as evidenced by increases in CD138+ cell numbers, IgM production, and mRNA levels of B lymphocyte-induced maturation protein-1 (Blimp-1) and the X-box binding protein 1 (XBP1). Furthermore, ALD-DNA enhanced CD40-activated naïve B cell proliferation. Collectively, these data indicate that self DNA can serve as a DAMP (damage-associated molecular pattern) that cooperates with signals from both innate and adaptive immunity to promote polyclonal B cell activation, a common characteristic of autoimmune diseases.  相似文献   

13.
The etiology of chronic prostatitis/chronic pelvic pain syndrome in men is unknown but may involve microbes and autoimmune mechanisms. We developed an infection model of chronic pelvic pain in NOD/ShiLtJ (NOD) mice with a clinical Escherichia coli isolate (CP-1) from a patient with chronic pelvic pain. We investigated pain mechanisms in NOD mice and compared it to C57BL/6 (B6) mice, a strain resistant to CP-1-induced pain. Adoptive transfer of CD4+ T cells, but not serum, from CP-1-infected NOD mice was sufficient to induce chronic pelvic pain. CD4+ T cells in CP-1-infected NOD mice expressed IFN-γ and IL-17A but not IL-4, consistent with a Th1/Th17 immune signature. Adoptive transfer of ex-vivo expanded IFN-γ or IL-17A-expressing cells was sufficient to induce pelvic pain in naïve NOD recipients. Pelvic pain was not abolished in NOD-IFN-γ-KO mice but was associated with an enhanced IL-17A immune response to CP1 infection. These findings demonstrate a novel role for Th1 and Th17-mediated adaptive immune mechanisms in chronic pelvic pain.  相似文献   

14.
15.

Background and Aims

IL-28B gene polymorphisms predict better therapeutic response and spontaneous clearance of HCV. Moreover, higher expression of IFN-lambda has been reported in patients with the rs12979860 CC favourable genotype. The study aim was to establish possible relationships between IL-28B rs12979860 genotypes and expression of IFN-alpha receptor-1 (IFNAR-1) in naïve HCV patients, and to explore the possible role of IFN-lambda.

Methods

IFNAR-1 mRNA levels were measured in PBMC from naïve patients with chronic hepatitis C with different IL-28 genotypes. The ability of IFN-lambda to up-regulate the expression of IFNAR-1 was established in PBMC from healthy donors carrying different IL-28B genotypes.

Results

Lower IFNAR-1 mRNA levels were observed in PBMC from HCV-infected naïve patients as compared to healthy donors. In healthy donors, IFNAR-1 mRNA levels were independent from IL-28B genotype, while in HCV patients, an increasing gradient was observed in TT vs CT vs CC carriers. In the latter group, a direct correlation between IFNAR-1 and endogenous IL-28B expression was observed. Moreover, IFN-lambda up-regulated IFNAR-1 expression in normal PBMC in a time-and dose-dependent manner, with a more effective response in CC vs TT carriers.

Conclusion

Endogenous levels of IFN-lambda may be responsible for partial restoration of IFNAR-1 expression in HCV patients with favourable IL-28 genotype. This, in turn, may confer to CC carriers a response advantage to either endogenous or exogenous IFN-alpha, representing the biological basis for the observed association between CC genotype and favourable outcome of either natural infection (clearance vs chronicization) or IFN therapy.  相似文献   

16.
BackgroundFifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population.MethodsTo determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling.ResultsAbacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells.ConclusionsWe propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection.  相似文献   

17.
IntroductionPre-naïve B cells represent an intermediate stage in human B-cell development with some functions of mature cells, but their involvement in immune responses is unknown. The aim of this study was to determine the functional role of normal pre-naïve B cells during immune responses and possible abnormalities in systemic lupus erythematosus (SLE) that might contribute to disease pathogenesis.MethodsPre-naïve, naïve, and memory B cells from healthy individuals and SLE patients were stimulated through CD40 and were analyzed for interleukin-10 (IL-10) production and co-stimulatory molecule expression and their regulation of T-cell activation. Autoreactivity of antibodies produced by pre-naïve B cells was tested by measuring immunoglobulin M (IgM) autoantibodies in culture supernatants after differentiation.ResultsCD40-stimulated pre-naïve B cells produce larger amounts of IL-10 but did not suppress CD4+ T-cell cytokine production. Activated pre-naïve B cells demonstrated IL-10-mediated ineffective promotion of CD4+ T-cell proliferation and induction of CD4+FoxP3+ T cells and IL-10 independent impairment of co-stimulatory molecule expression and tumor necrosis factor-alpha (TNF-α) and IL-6 production. IgM antibodies produced by differentiated pre-naïve B cells were reactive to single-stranded deoxyribonucleic acid. SLE pre-naïve B cells were defective in producing IL-10, and co-stimulatory molecule expression was enhanced, resulting in promotion of robust CD4+ T-cell proliferation.ConclusionsThere is an inherent and IL-10-mediated mechanism that limits the capacity of normal pre-naïve B cells from participating in cellular immune response, but these cells can differentiate into autoantibody-secreting plasma cells. In SLE, defects in IL-10 secretion permit pre-naïve B cells to promote CD4+ T-cell activation and may thereby enhance the development of autoimmunity.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0687-1) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice.

Methodology/principals findings

In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%–48%). Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection.

Conclusion/significance

Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate.  相似文献   

19.
In vitro evidence suggests that memory CD4+ cells are preferentially infected by human immunodeficiency virus type 1 (HIV-1), yet studies of HIV-1-infected individuals have failed to detect preferential memory cell depletion. To explore this paradox, we stimulated CD45RA+ CD4+ (naïve) and CD45RO+ CD4+ (memory) cells with antibodies to CD3 and CD28 and infected them with either CCR5-dependent (R5) or CXCR4-dependent (X4) HIV-1 isolates. Naïve CD4+ cells supported less X4 HIV replication than their memory counterparts. However, naïve cells were susceptible to R5 viral infection, while memory cells remained resistant to infection and viral replication. As with the unseparated cells, mixing the naïve and memory cells prior to infection resulted in cells resistant to R5 infection and highly susceptible to X4 infection. While both naïve and memory CD4+ subsets downregulated CCR5 expression in response to CD28 costimulation, only the memory cells produced high levels of the β-chemokines RANTES, MIP-1α, and MIP-1β upon stimulation. Neutralization of these β-chemokines rendered memory CD4+ cells highly sensitive to infection with R5 HIV-1 isolates, indicating that downregulation of CCR5 is not sufficient to mediate complete protection from CCR5 strains of HIV-1. These results indicate that susceptibility to R5 HIV-1 isolates is determined not only by the level of CCR5 expression but also by the balance of CCR5 expression and β-chemokine production. Furthermore, our results suggest a model of HIV-1 transmission and pathogenesis in which naïve rather than memory CD4+ T cells serve as the targets for early rounds of HIV-1 replication.  相似文献   

20.
Sjögren’s syndrome (SS) is an autoimmune disease characterised by breach of self-tolerance towards nuclear antigens resulting in high affinity circulating autoantibodies. Although peripheral B cell disturbances have been described in SS, with predominance of naïve and reduction of memory B cells, the stage at which errors in B cell tolerance checkpoints accumulate in SS is unknown. Here we determined the frequency of self- and poly-reactive B cells in the circulating naïve and memory compartment of SS patients. Single CD27−IgD+ naïve, CD27+IgD+ memory unswitched and CD27+IgD− memory switched B cells were sorted by FACS from the peripheral blood of 7 SS patients. To detect the frequency of polyreactive and autoreactive clones, paired Ig VH and VL genes were amplified, cloned and expressed as recombinant monoclonal antibodies (rmAbs) displaying identical specificity of the original B cells. IgVH and VL gene usage and immunoreactivity of SS rmAbs were compared with those obtained from healthy donors (HD). From a total of 353 VH and 293 VL individual sequences, we obtained 114 rmAbs from circulating naïve (n = 66) and memory (n = 48) B cells of SS patients. Analysis of the Ig V gene repertoire did not show significant differences in SS vs. HD B cells. In SS patients, circulating naïve B cells (with germline VH and VL genes) displayed a significant accumulation of clones autoreactive against Hep-2 cells compared to HD (43.1% vs. 25%). Moreover, we demonstrated a progressive increase in the frequency of circulating anti-nuclear naïve (9.3%), memory unswitched (22.2%) and memory switched (27.3%) B cells in SS patients. Overall, these data provide novel evidence supporting the existence of both early and late defects in B cell tolerance checkpoints in patients with SS resulting in the accumulation of autoreactive naïve and memory B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号