首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Chains of coupled limit-cycle oscillators are considered, in which the coupling is assumed to be weak and only between adjacent oscillators. For such a system the change in frequency of an oscillator due to the coupling can be expressed, up to first order in thecoupling strength, by functions that depend only on the phase difference between the coupled oscillators. In this article a numerical algorithm is developed for the evaluation of these functions (the H-functions) in terms of a single oscillator and the interactions between coupled oscillators. The technique is applied to a connectionist model for the locomotor pattern generator in the lamprey spinal cord.An H-function so derived is compared to a function derived empirically(the C-function) from simulations of the same system. The phase lagsthat develop between adjacent oscillators in a simulated chain are compared with those predicted theoretically, and it is shown that coupling thatis functionally strong is nonetheless weak enough to behave as predicted.  相似文献   

2.
《Current biology : CB》2022,32(16):3515-3528.e4
  1. Download : Download high-res image (134KB)
  2. Download : Download full-size image
  相似文献   

3.
Abstract: Dopamine and the D1, receptor agonist SKF 38393 activate the phospholipase C-rnediated hydrolysis of phosphoinositides in brain slices. This action is selectively inhibited by SCH-23390, thus suggesting its mediation through the dopamine D1 receptor. To determine if the dopamine receptor that mediates Phosphoinositide hydrolysis is the adenylyl, cyclase-linked D1 receptor or a different subtype of the dopamine D1 receptor, 20 benzazepine compounds that were previously characterized as selective dopamine D1 receptor agonists were tested for stimulation of Phosphoinositide hydrolysis in rat striatal slices and for activation of adenylyl cyclase in rat striatal membranes. The compounds displayed a range of potencies and efficacies in stimulating adenylyl cyclase or Phosphoinositide hydrolysis. Compounds such as SKF 81427 and SKF 38393 were as efficacious as dopamine in stimulating Phosphoinositide hydrolysis, whereas other compounds, including SKF 85174 and SKF 86284, although showing high efficacy in stimulating cyclic AMP, failed to stimulate inositol phosphate formation. There was no correlation between the potencies (r= 0.016; p < 0.95) or efficacies (r=?0.294; p < 0.24) of the tested compounds in stimulating cyclic AMP formation and phosphoinositide hydrolysis. These observations indicate that the D1-like dopamine receptor that mediates phosphoinositide hydrolysis is pharmacologically distinct from the classic D1 receptor that is coupled to stimulation of cyclic AMP formation.  相似文献   

4.
We previously showed that phorbol-12-myristate-13-acetate (PMA) mediates a robust PKC-dependent sensitization and desensitization of the highly homologous human Gs protein and adenylyl cyclase (AC)-linked D1 (hD1R) and D5 (hD5R) dopaminergic receptors, respectively. Here, we demonstrate using forskolin-mediated AC stimulation that PMA-mediated hD1R sensitization and hD5R desensitization is not associated with changes in AC activity. We next employed a series of chimeric hD1R and hD5R to delineate the underlying structural determinants dictating the subtype-specific regulation of human D1-like receptors by PMA. We first used chimeric receptors in which the whole terminal region (TR) spanning from the extracellular face of transmembrane domain 6 to the end of cytoplasmic tail (CT) or CT alone were exchanged between hD1R and hD5R. CT and TR swaps lead to chimeric hD1R and hD5R retaining PMA-induced sensitization and desensitization of wild type parent receptors. In striking contrast, hD1R sensitization and hD5R desensitization mediated by PMA are correspondingly switched to PMA-induced receptor desensitization and sensitization following the IL3 swap between hD1R and hD5R. Cell treatment with the PKC blocker, Gö6983, inhibits PMA-induced regulation of these chimeric receptors in a similar fashion to wild type receptors. Further studies with chimeras constructed by exchanging IL3 and TR show that PMA-induced regulation of these chimeras remains fully switched relative to their respective wild type parent receptor. Interestingly, results obtained with the exchange of IL3 and TR also reveal that the D1-like subtype-specific regulation by PMA, while fully dictated by IL3, can be modulated in a receptor conformation-dependent manner. Overall, our results strongly suggest that IL3 is the critical determinant underlying the subtype-specific regulation of human D1-like receptor responsiveness by PKC.  相似文献   

5.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

6.
Keyword index     
《Journal of neurochemistry》2003,87(6):1579-1582
  相似文献   

7.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号