首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accumulation of mildly deleterious missense mutations in individual human genomes has been proposed to be a genetic basis for complex diseases. The plausibility of this hypothesis depends on quantitative estimates of the prevalence of mildly deleterious de novo mutations and polymorphic variants in humans and on the intensity of selective pressure against them. We combined analysis of mutations causing human Mendelian diseases, of human-chimpanzee divergence, and of systematic data on human genetic variation and found that ~20% of new missense mutations in humans result in a loss of function, whereas ~27% are effectively neutral. Thus, the remaining 53% of new missense mutations have mildly deleterious effects. These mutations give rise to many low-frequency deleterious allelic variants in the human population, as is evident from a new data set of 37 genes sequenced in >1,500 individual human chromosomes. Surprisingly, up to 70% of low-frequency missense alleles are mildly deleterious and are associated with a heterozygous fitness loss in the range 0.001-0.003. Thus, the low allele frequency of an amino acid variant can, by itself, serve as a predictor of its functional significance. Several recent studies have reported a significant excess of rare missense variants in candidate genes or pathways in individuals with extreme values of quantitative phenotypes. These studies would be unlikely to yield results if most rare variants were neutral or if rare variants were not a significant contributor to the genetic component of phenotypic inheritance. Our results provide a justification for these types of candidate-gene (pathway) association studies and imply that mutation-selection balance may be a feasible evolutionary mechanism underlying some common diseases.  相似文献   

2.
3.
4.
5.
The influence of phenotypic effects of genetic mutations on molecular evolution is not well understood. Neutral and nearly neutral theories of molecular evolution predict a negative relationship between the evolutionary rate of proteins and their functional importance; nevertheless empirical studies seeking relationships between evolutionary rate and the phenotypic role of proteins have not produced conclusive results. In particular, previous studies have not found the expected negative correlation between evolutionary rate and gene pleiotropy. Here, we studied the effect of gene pleiotropy and the phenotypic size of mutations on the evolutionary rate of genes in a geometrical model, in which gene pleiotropy was characterized by n molecular phenotypes that affect organismal fitness. For a nearly neutral process, we found a negative relationship between evolutionary rate and mutation size but pleiotropy did not affect the evolutionary rate. Further, for a selection model, where most of the substitutions were fixed by natural selection in a randomly fluctuating environment, we also found a negative relationship between evolutionary rate and mutation size, but interestingly, gene pleiotropy increased the evolutionary rate as √n. These findings may explain part of the disagreement between empirical data and traditional expectations.  相似文献   

6.
Sex and infection are intimately linked. Many diseases are spread by sexual contact, males are thought to evolve exaggerated sexual signals to demonstrate their immune robustness, and pathogens have been shown to direct the evolution of recombination. In all of these examples, infection is influencing the evolution of male and female fitness, but less is known about how sex differences influence pathogen fitness. A defining characteristic of sexual dimorphism is not only divergent phenotypes, but also a complex genetic architecture involving changes in genetic correlations among shared fitness traits, and differences in the accumulation of mutations—all of which may affect selection on an invading pathogen. Here, we outline the implications that the genetics of sexual dimorphism can have for host–pathogen coevolution and argue that male–female differences influence more than just the environment that a pathogen experiences.  相似文献   

7.
Although the assumption of the neutral theory of molecular evolution - that some classes of mutation have too small an effect on fitness to be affected by natural selection - seems intuitively reasonable, over the past few decades the theory has been in retreat. At least in species with large populations, even synonymous mutations in exons are not neutral. By contrast, in mammals, neutrality of these mutations is still commonly assumed. However, new evidence indicates that even some synonymous mutations are subject to constraint, often because they affect splicing and/or mRNA stability. This has implications for understanding disease, optimizing transgene design, detecting positive selection and estimating the mutation rate.  相似文献   

8.
9.

Background  

Cancer is caused through a multistep process, in which a succession of genetic changes, each conferring a competitive advantage for growth and proliferation, leads to the progressive conversion of normal human cells into malignant cancer cells. Interrogation of cancer genomes holds the promise of understanding this process, thus revolutionizing cancer research and treatment. As datasets measuring copy number aberrations in tumors accumulate, a major challenge has become to distinguish between those mutations that drive the cancer versus those passenger mutations that have no effect.  相似文献   

10.
Retrotransposons constitute the majority of pseudogenic protein coding regions of most eukaryotic genomes. Most genomes carry tens to thousands of retrotransposon copies derived from dozens of distinct families, but most if not all of these copies are non-functional and contain disabling mutations, including large numbers of indels. Until recently, most regions rich in these elements were virtually ignored in all but the most complete genome sequencing projects, and the full extent of their impact on the structure and function of the genomes of higher eukaryotes was under-appreciated. Even when new retrotransposons are encountered and annotated by automated gene finding programs and similarity searches, coding regions are treated as exons and invariably and not surprisingly mistranslated because of numerous frameshift mutations and large indels. Very few functional retrotransposons contain introns, as in silico annotations imply. While many repetitive DNA consensus sequences have been assembled from collections of largely full-length copies using full-length templates, we have shown that repetitive DNA consensus sequence contigs representing long, moderately high copy-number elements can also be generated ex novo in the absence of templates from very short overlapping sequences. We have devised an in silico strategy to recover and reconstruct consensus sequences of elements up to 20,000 bp by building dense contigs of hundreds of overlapping 400 to 900-bp records found in the Genbank Genome Survey Sequence database. The results are hypothetical ancestral sequences that encode elements that appear to be fully functional with intact open reading frames and other conserved features.  相似文献   

11.
In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported.  相似文献   

12.
In sharp contrast with mammals and birds, many cold‐blooded vertebrates present homomorphic sex chromosomes. Empirical evidence supports a role for frequent turnovers, which replace nonrecombining sex chromosomes before they have time to decay. Three main mechanisms have been proposed for such turnovers, relying either on neutral processes, sex‐ratio selection, or intrinsic benefits of the new sex‐determining genes (due, e.g., to linkage with sexually antagonistic mutations). Here, we suggest an additional mechanism, arising from the load of deleterious mutations that accumulate on nonrecombining sex chromosomes. In the absence of dosage compensation, this load should progressively lower survival rate in the heterogametic sex. Turnovers should occur when this cost outweighs the benefits gained from any sexually antagonistic genes carried by the nonrecombining sex chromosome. We use individual‐based simulations of a Muller's ratchet process to test this prediction, and investigate how the relevant parameters (effective population size, strength and dominance of deleterious mutations, size of nonrecombining segment, and strength of sexually antagonistic selection) are expected to affect the rate of turnovers.  相似文献   

13.
A variety of degenerative diseases involving deficiencies in mitochondrial bioenergetics have been associated with mitochondrial DNA (mtDNA) mutations. Maternally inherited mtDNA nucleotide substitutions range from neutral polymorphisms to lethal mutations. Neutral polymorphisms are ancient, having accumulated along mtDNA lineages, and thus correlate with ethnic and geographic origin. Mildly deleterious base substitutions have also occurred along mtDNA lineages and have been associated with familial deafness and some cases of Alzheimer's Disease and Parkinson's Disease. Moderately deleterious nucleotide substitutions are more recent and cause maternally-inherited diseases such as Leber's Hereditary Optic Neuropathy (LHON) and Myoclonic Epilepsy and Ragged-Red Fiber Disease (MERRF). Severe nucleotide substitutions are generally new mutations that cause pediatric diseases such as Leigh's Syndrome and dystonia. MtDNA rearrangements also cause a variety of phenotypes. The milder rearrangements generally involve duplications and can cause maternally-inherited adult-onset diabetes and deafness. More severe rearrangements frequently involving detetions have been associated with adult-onset Chronic Progressive External Ophthalmoplegia (CPEO) and Kearns-Sayre Syndrome (KSS) or the lethal childhood disorder, Pearson's Marrow/Pancreas Syndrome. Defects in nuclear-cytoplasmic interaction have also been observed, and include an autosomal dominant mutation causing multiple muscle mtDNA deletions and a genetically complex disease resulting in the tissue depletion of mtDNAs. MtDNA nucleotide substitution and rearrangement mutations also accumulate with age in quiescent tissues. These somatic mutations appear to degrade cellular bioenergetic capacity, exacerbate inherited mitochondrial defects and contribute to tissue senescence. Thus, bioenergetic defects resulting from mtDNA mutations may be a common cause of human degenerative disease.  相似文献   

14.

Background

Disorders of the mitochondrial respiratory chain are heterogeneous in their symptoms and underlying genetics. Simple links between candidate mutations and expression of disease phenotype typically do not exist. It thus remains unclear how the genetic variation in the mitochondrial genome contributes to the phenotypic expression of complex traits and disease phenotypes.

Scope of review

I summarize the basic genetic processes known to underpin mitochondrial disease. I highlight other plausible processes, drawn from the evolutionary biological literature, whose contribution to mitochondrial disease expression remains largely empirically unexplored. I highlight recent advances to the field, and discuss common-ground and -goals shared by researchers across medical and evolutionary domains.

Major conclusions

Mitochondrial genetic variance is linked to phenotypic variance across a variety of traits (e.g. reproductive function, life expectancy) fundamental to the upkeep of good health. Evolutionary theory predicts that mitochondrial genomes are destined to accumulate male-harming (but female-friendly) mutations, and this prediction has received proof-of-principle support. Furthermore, mitochondrial effects on the phenotype are typically manifested via interactions between mitochondrial and nuclear genes. Thus, whether a mitochondrial mutation is pathogenic in effect can depend on the nuclear genotype in which is it expressed.

General significance

Many disease phenotypes associated with OXPHOS malfunction might be determined by the outcomes of mitochondrial–nuclear interactions, and by the evolutionary forces that historically shaped mitochondrial DNA (mtDNA) sequences. Concepts and results drawn from the evolutionary sciences can have broad, but currently under-utilized, applicability to the medical sciences and provide new insights into understanding the complex genetics of mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

15.
Our current understanding of sympatric speciation is that it occurs primarily through disruptive selection on ecological genes driven by competition, followed by reproductive isolation through reinforcement-like selection against inferior intermediates/heterozygotes. Our evolutionary model of selection on resource recognition and preference traits suggests a new mechanism for sympatric speciation. We find speciation can occur in three phases. First a polymorphism of functionally different phenotypes is established through evolution of specialization. On the gene level, regulatory functions have evolved in which some alleles are conditionally switched off (i.e. are silent). These alleles accumulate harmful mutations that potentially may be expressed in offspring through recombination. Second mating associated with resource preference invades because harmful mutations in parents are not expressed in the offspring when mating assortatively, thereby dividing the population into two pre-zygotically isolated resource-specialist lineages. Third, silent alleles that evolved in phase one now accumulate deleterious mutations over the following generations in a Bateson-Dobzhansky-Muller fashion, establishing a post-zygotic barrier to hybridization.  相似文献   

16.
Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of μ = 1×10−7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to μ = 5×10−7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed.  相似文献   

17.
Expression of plant phenotypes can depend on both plant genomes and interactions between plants and the microbes living in, on and near their roots. We understand a growing number of the mechanistic links between plant genotypes and phenotypes, such as defence against herbivory (see brief review in Hubbard et al., 2019), yet the links between root microbiomes and the comprehensive swathe of plant phenotypes they affect (Friesen et al., 2011) remain less clear. In this issue of Molecular Ecology, Hubbard et al. (2019) follow microbe‐ and plant‐driven changes in plant defence against hervibory from molecular underpinnings to ecological consequences, contrasting both the metabolites affected and the magnitude of defensive impact. Naively, we might expect plant genomes to drive more variation in phenotype than the root microbiome, but Hubbard et al. (2019) find the opposite, implying profound consequences for plant trait evolution and ecological interactions.  相似文献   

18.
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation‐based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness‐related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time‐dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.  相似文献   

19.
Recent studies have shown that single-stranded (ss) viral RNAs fold into more compact structures than random RNA sequences with similar chemical composition and identical length. Based on this comparison, it has been suggested that wild-type viral RNA may have evolved to be atypically compact so as to aid its encapsidation and assist the viral assembly process. To further explore the compactness selection hypothesis, we systematically compare the predicted sizes of >100 wild-type viral sequences with those of their mutants, which are evolved in silico and subject to a number of known evolutionary constraints. In particular, we enforce mutation synonynimity, preserve the codon-bias, and leave untranslated regions intact. It is found that progressive accumulation of these restricted mutations still suffices to completely erase the characteristic compactness imprint of the viral RNA genomes, making them in this respect physically indistinguishable from randomly shuffled RNAs. This shows that maintaining the physical compactness of the genome is indeed a primary factor among ssRNA viruses’ evolutionary constraints, contributing also to the evidence that synonymous mutations in viral ssRNA genomes are not strictly neutral.  相似文献   

20.
In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号