首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Leukocyte telomere length (LTL) provides a potential marker of biological age, closely related to the endothelial dysfunction and consequently to the atherosclerotic process. To investigate the relationship between the LTL and the risk of premature acute myocardial infarction and to evaluate the predictive value of LTL on the onset of major cardiovascular events, 199 patients from 18 to 48 years old with first diagnosis of acute myocardial infarction were enrolled and were matched with 190 controls for sex and age (±1 year). Clinical data and coronary artery disease were evaluated at enrollment and at follow up. LTL was measured at enrollment using a quantitative PCR-based method. No significant differences were observed in LTL between cases and controls (p = 0.20) and with the presence of coronary artery disease in patients (p = 0.47). Hypercholesterolemic cases presented LTL significantly longer than cases without hypercholesterolemia (t/s: 0.82±0.16 p = 0.79 and t/s norm: 0.79±0.19 p = 0.01), as confirmed in multivariate regression analysis (p = 0.005, β = 0.09). Furthermore, multivariate regression analysis showed LTL significantly shorter in hypertensive cases than in normotensive cases (p = 0.04, β = −0.07). One hundred seventy-one cases (86%) ended the average follow up of 9±5 years, 92 (54%) presented a major cardiovascular event. At multivariate regression analysis the LTL detected at enrollment did not represent a predictive factor of major cardiovascular events nor it significantly impacted with cumulative events. Based on present cohort of young Italian patients, the LTL did not represent a marker of acute myocardial infarction nor had a predictive role at medium term follow up.  相似文献   

2.
Age-associated telomere shortening is a well documented feature of peripheral blood cells in human population studies, but it is not known to what extent these data can be transferred to the individual level. Telomere length (TL) in two blood samples taken at ~10 years interval from 959 individuals was investigated using real-time PCR. TL was also measured in 13 families from a multigenerational cohort. As expected, we found an age-related decline in TL over time (r=–0.164, P<0.001, n=959). However, approximately one-third of the individuals exhibited a stable or increased TL over a decade. The individual telomere attrition rate was inversely correlated with initial TL at a highly significant level (r=–0.752, P<0.001), indicating that the attrition rate was most pronounced in individuals with long telomeres at baseline. In accordance, the age-associated telomere attrition rate was more prominent in families with members displaying longer telomeres at a young age (r=–0.691, P<0.001). Abnormal blood TL has been reported at diagnosis of various malignancies, but in the present study there was no association between individual telomere attrition rate or prediagnostic TL and later tumor development. The collected data strongly suggest a TL maintenance mechanism acting in vivo, providing protection of short telomeres as previously demonstrated in vitro. Our findings might challenge the hypothesis that individual TL can predict possible life span or later tumor development.  相似文献   

3.

Introduction

With advancing age the left ventricle (LV) undergoes structural and functional changes, thereby creating the substrate for the development of diseases. One possible mechanism of the ageing heart is a cellular senescence. Leukocyte telomere length (LTL) is a marker of replicative ageing. The purpose of this study was to evaluate the structure and function of the LV in people of different ages free of cardiovascular diseases (CVD) and regular drug medication and to assess their relationship with LTL. We hypothesized that age-related changes in LV myocardium are associated with telomere length.

Methods

The study population consisted of 150 healthy, non-obese volunteers aged 28 to 78 years without history of CVD, significant deviations by 12-lead electrocardiogram and negative exercise test (treadmill stress test). All the participants underwent standardized transthoracic echocardiography using an available system (iE33; Philips). The LTL was measured by real-time quantitative polymerase chain reaction. We determined the relative ratio of telomere repeat copy number (T) to single-copy gene copy number (S).

Results

In the older people there was a higher wall thickness than in the younger (1.03±0.09 vs. 0.88±0.10, p<0.01), whereas LV mass index was comparable between them (85.8±15.40 vs. 83.1±11.8, p = 0.20). There was a decrease in LV dimensions with advancing age (p<0.001). Older subjects had impairment in LV relaxation. LTL was associated with decreased E/A, Em/Am ratio (β = -0.323, p = 0.0001) after adjusting for age, sex and risk factors. There is no relation between the LTL and the structure of LV.

Conclusions

Our data suggest that the ageing process leads to changes in LV structure and diastolic function and is linked with a phenotype of concentric LV remodeling. Telomere attrition is associated with age-related LV diastolic dysfunction. Telomere length appears to be a biomarker of myocardial ageing.  相似文献   

4.
Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which could contribute to population declines, especially in times of energy shortage.  相似文献   

5.
Limitless reproductive potential is one of the hallmarks of cancer cells. This ability is due to the maintenance of telomeres, erosion of which causes cellular senescence or death. While most cancer cells activate telomerase, a telomere-elongating enzyme, it remains elusive as to why cancer cells often maintain shorter telomeres than the cells in the surrounding normal tissues. Here, we show that forced telomere elongation in cancer cells promotes their differentiation in vivo. We elongated the telomeres of human prostate cancer cells that possess short telomeres by enhancing their telomerase activity. The resulting cells had long telomeres and retained the ability to form tumors in nude mice. Strikingly, these tumors exhibited many duct-like structures and reduced N-cadherin expression, reminiscent of well-differentiated adenocarcinoma. These changes were caused by telomere elongation and not by enhanced telomerase activity. Gene expression profiling revealed that tumor formation was accompanied by the expression of innate immune system-related genes, which have been implicated in maintaining tumor cells in an undifferentiated state and poor-prognosis cancers. In tumors derived from the telomere-elongated cells, upregulation of such gene sets is not observed. Our observations suggest a functional contribution of short telomeres to tumor malignancy by regulation of cancer cell differentiation.  相似文献   

6.
It has been proposed that the progressive shortening of telomeres in somatic cells eventually results in senescence. Previous experiments have demonstrated that many immortal cell lines have acquired telomerase activity leading to stabilization of telomere length. Telomere dynamics and telomerase activity were examined in the telomerase-positive immortal cell lines HeLa and 293 and subclones derived from them. A mass culture of HeLa cells had a stable mean telomere length over 60 population doublings (PD)in vitro.Subclones of this culture, however, had a range of mean telomere lengths indicating that telomeric heterogeneity exists within a population with a stable mean telomere length. Some of the subclones lacked detectable telomerase activity soon after isolation but regained it by PD 18, suggesting that at least some of the variation in telomere length can be attributed to variations in telomerase activity levels. 293 subclones also varied in telomere length and telomerase activity. Some telomerase-positive 293 subclones contained long telomeres that gradually shortened, demonstrating that factors other than telomerase also act to modulate telomere length. Fluctuations in telomere length in telomerase-positive immortalized cells may contribute to chromosomal instability and clonal evolution.  相似文献   

7.
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.  相似文献   

8.
Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans.  相似文献   

9.
10.
Trypanosoma brucei is a master of antigenic variation and immune response evasion. Utilizing a genomic repertoire of more than 1000 Variant Surface Glycoprotein-encoding genes (VSGs), T. brucei can change its protein coat by “switching” from the expression of one VSG to another. Each active VSG is monoallelically expressed from only one of approximately 15 subtelomeric sites. Switching VSG expression occurs by three predominant mechanisms, arguably the most significant of which is the non-reciprocal exchange of VSG containing DNA by duplicative gene conversion (GC). How T. brucei orchestrates its complex switching mechanisms remains to be elucidated. Recent work has demonstrated that an exogenous DNA break in the active site could initiate a GC based switch, yet the source of the switch-initiating DNA lesion under natural conditions is still unknown. Here we investigated the hypothesis that telomere length directly affects VSG switching. We demonstrate that telomerase deficient strains with short telomeres switch more frequently than genetically identical strains with long telomeres and that, when the telomere is short, switching preferentially occurs by GC. Our data supports the hypothesis that a short telomere at the active VSG expression site results in an increase in subtelomeric DNA breaks, which can initiate GC based switching. In addition to their significance for T. brucei and telomere biology, the findings presented here have implications for the many diverse pathogens that organize their antigenic genes in subtelomeric regions.  相似文献   

11.
12.
13.
14.
Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex.  相似文献   

15.
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.  相似文献   

16.
目的:研究去甲基化药物5-氮杂胞嘧啶核苷(5-Azacytidine,5-Aza-C)对鼻咽癌细胞端粒长度及细胞生长增殖的影响。方法: 常规培养鼻咽癌CNE,CNE1,CNE2 及5-8F细胞系,5-Aza-C 处理鼻咽癌细胞后,甲基化测序聚合酶链反应(MSP)法检测亚端粒 区D4Z4 甲基化,端粒限制性片断检测端粒长度,CCK-8 检测细胞增殖。结果:2.5 uM浓度的5-Aza-C处理后,亚端粒区D4Z4 序 列的甲基化水平明显下降,约在15-20%之间,与处理前的甲基化水平(35-48%)有明显差异,差异均有统计学意义(P < 0.05)。在1 uM和2.5 uM浓度的5-Aza-C 处理后,四种细胞的端粒长度明显缩短,长度在2-4.5kb 之间,差异具有统计学意义(P < 0.05)。5uM 的5-Aza-C处理72 h 后,CNE,CNE1,CNE2 和5-8F 的生存率分别为51.27%,50.46%,48.85%,48.83%,10 uM 的5-azaC 处理72 h 后,CNE,CNE1,CNE2 和5-8F的生存率分别为31.64%,32.34%,30.01%,32.10%,与对照组比较差异有统计学意义(P<0.01)。结 论:5-Aza-C 能缩短端粒长度,抑制鼻咽癌细胞生长增殖活性。  相似文献   

17.
Although mutations in the genes encoding either the protein or RNA component of telomerase have been found in patients with various blood disorders, the impact of telomere length on hematopoiesis is less well understood for subjects from the general population. Here we have measured telomere lengths of genomic DNA isolated from circulating leukocytes of 3157 subjects, ranging from 18 to 85 years of age, enrolled in a large multiethnic population based study, the Dallas Heart Study 2. Shorter telomere lengths are marginally associated with lower red blood cell counts in this cohort, but are significantly associated with larger mean red blood cell size (as measured by the MCV), increased red blood cell distribution width (RDW), higher hemoglobin levels and lower platelet counts, even after correction for age, gender and ethnicity (p-values of <0.0001, <0.0001, 0.0009 and 0.0016, respectively). In a multiple regression model we find that telomere length is a significant covariate of MCV (p = 7.6×10−8), independent of age, ethnicity, BMI, current smoking, alcohol consumption, iron or homocysteine levels. The effect of telomere length on MCV variation is comparable to the effect of smoking or alcohol consumption and is more significant in older individuals (p = 9.2×10−7 for >50 years vs. p = 0.0006 for <50 years of age). To our knowledge, this is the first report of an association between telomere length and red cell size in a large urban US population and suggests a biologic mechanism for macrocytosis of aging.  相似文献   

18.
端粒结合蛋白与端粒长度调控   总被引:2,自引:0,他引:2  
真核细胞端粒DNA序列的丢失与细胞的衰老及凋亡有关.端粒酶的激活可维持端粒长度并使细胞获得无限增殖的能力.端粒结合蛋白则可能通过调节端粒酶或其他相关因子的行为参与对端粒长度的调控.近年有关端粒结合蛋白的研究取得了突破性进展并在此基础上建立了端粒长度调控模型.  相似文献   

19.
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres.  相似文献   

20.
Excess adiposity is associated with increased cardiovascular morbidity and mortality. Endothelial progenitor cells (EPCs) play an important role in vascular repair. We tested the hypothesis that increased adiposity is associated with EPC dysfunction, characterized by diminished capacity to release angiogenic cytokines, increased apoptotic susceptibility, reduced cell migration, and shorter telomere length. A total of 67 middle‐aged and older adults (42–67 years) were studied: 25 normal weight (normal weight; BMI: 18.5–24.9 kg/m2) and 42 overweight/obese (overweight/obese; BMI: 25.0–34.9 kg/m2). Cells with phenotypic EPC characteristics were isolated from peripheral blood. EPC release of vascular endothelial growth factor (VEGF) and granulocyte colony–stimulating factor (G‐CSF) was determined in the absence and presence of phytohemagglutinin (10 µg/ml). Intracellular active caspase‐3 and cytochrome c concentrations were determined by immunoassay. Migratory activity of EPCs in response to VEGF (2 ng/ml) and stromal cell–derived factor‐1α (SDF‐1α; 10 ng/ml) was determined by Boyden chamber. Telomere length was assessed by Southern hybridization. Phytohemagglutinin‐stimulated release of VEGF (90.6 ± 7.6 vs. 127.2 ± 11.6 pg/ml) and G‐CSF (896.1 ± 77.4 vs. 1,176.3 ± 126.3 pg/ml) was ~25% lower (P < 0.05) in EPCs from overweight/obese vs. normal weight subjects. Staurosporine induced a ~30% greater (P < 0.05) increase in active caspase‐3 in EPCs from overweight/obese (2.8 ± 0.2 ng/ml) compared with normal weight (2.2 ± 0.2) subjects. There were no significant differences in EPC migration to either VEGF or SDF‐1α. Telomere length did not differ between groups. These results indicate that increased adiposity adversely affects the ability of EPCs to release proangiogenic cytokines and resist apoptosis, potentially compromising their reparative potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号