首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruton’s tyrosine kinase (BTK) is a Tec family kinase with a well-defined role in the B cell receptor (BCR) pathway. It has become an attractive kinase target for selective B cell inhibition, and for the treatment of B cell related diseases. Many BTK inhibitors have been discovered for the treatment of cancer and rheumatoid arthritis, including a series of BTK inhibitors based on 8-amino-imidazo[1,5-a]pyrazine we recently reported. The X-ray crystal structures of BTK with inhibitors were also published, which provided great help for the SAR design. Here we report our SAR work introducing ring constraints for the 3-position piperidine amides on the BTK inhibitors based on 8-amino-imidazo[1,5-a]pyrazine. This modification improved the potency in BTK inhibitions, as well as the PK profile and the off-target selectivity. The dose-dependent efficacy of two BTK inhibitors was observed in the rat collagen induced arthritis (CIA) model.  相似文献   

2.
Rho kinase (ROCK) is an attractive therapeutic target for various diseases including glaucoma, hypertension, and spinal cord injury. Herein, we report the development of a series of ROCK-II inhibitors based on 4-quinazolinone and quinazoline scaffolds. SAR studies at three positions of the quinazoline core led to the identification of analogs with high potency against ROCK-II and good selectivity over protein kinase A (PKA).  相似文献   

3.
BackgroundBruton's tyrosine kinase (BTK) is a key component of the B-cell receptor (BCR) pathway and a clinically validated target for small molecule inhibitors such as ibrutinib in the treatment of B-cell malignancies. Tirabrutinib (GS-4059/ONO-4059) is a selective, once daily, oral BTK inhibitor with clinical activity against many relapsed/refractory B-cell malignancies.MethodsCovalent binding of tirabrutinib to BTK Cys-481 was assessed by LC-MSMS analysis of BTK using compound as a variable modification search parameter. Inhibition potency of tirabrutinib, ibrutinib, acalabrutinib, and spebrutinib against BTK and related kinases was studied in a dose-dependent manner either after a fixed incubation time (as used in conventional IC50 studies) or following a time course where inactivation kinetics were measured.ResultsTirabrutinib irreversibly and covalently binds to BTK Cys-481. The inactivation efficiency kinact/Ki was measured and used to calculate selectivity among different kinases for each of the four inhibitors studied. Tirabrutinib showed a kinact/Ki value of 2.4 ± 0.6 × 104 M−1 s−1 for BTK with selectivity against important off-targets.ConclusionsFor the BTK inhibitors tested in this study, analysis of the inactivation kinetics yielded a more accurate measurement of potency and selectivity than conventional single-time point inhibition measurements. Subtle but clear differences were identified between clinically tested BTK inhibitors which may translate into differentiated clinical efficacy and safety.General significanceThis is the first study that offers a detailed side-by-side comparison of four clinically-relevant BTK inhibitors with respect to their inactivation of BTK and related kinases.  相似文献   

4.
A new series of Proteolysis Targeting Chimeras (PROTACs) targeting Bruton's Tyrosine Kinase (BTK) was synthesized, with the goal of improving the pharmacokinetic properties of our previously reported PROTAC, MT802. We recently described the ability of MT802 to induce degradation of both wild-type and C481S mutant BTK in immortalized cells and patient-derived B-lymphocytes. However, the pharmacokinetic properties of MT802 were not suitable for further in vivo development. Therefore, we undertook a systematic medicinal chemistry campaign to overcome this issue and made a series of PROTACs with structural modifications to the linker and E3-recruiting ligand; more specifically, the new PROTACs were synthesized with different von Hippel-Lindau (VHL) and cereblon (CRBN) ligands while keeping the BTK ligand and linker length constant. This approach resulted in an equally potent PROTAC, SJF620, with a significantly better pharmacokinetic profile than MT802. This compound may hold promise for further in vivo exploration of BTK degradation.  相似文献   

5.
A series of 3-substituted pyrazolopyrimidine derivatives as BTK inhibitors were designed by structure-based drug design and they were synthesized, evaluated by enzyme-based assay and anti-proliferation against Ramos and Raji cells. Most of them displayed good inhibitory activities against both BTK and B-cell lymphoblastic leukemia lines in vitro. Among them, compound 8a exhibited excellent potency (IC50?=?7.95?nM against BTK enzyme, 8.91?μM against Ramos cells and 1.80?μM against Raji cells), with a better hydrophilicity (ClogP?=?3.33). These explorations provided new clues to discover 3-substituted pyrazolopyrimidine derivatives as novel anti-tumor agents.  相似文献   

6.
Intra-molecular hydrogen bonding was introduced to the quinazoline motif to form a pseudo ring (intra-molecular H-bond scaffold, iMHBS) to mimic our previous published core structures, pyrido[2.3-D]pyrimidin-7-one and pteridinone, as PI3K/mTOR dual inhibitors. This design results in potent PI3K/mTOR dual inhibitors and the purposed intra-molecular hydrogen bonding structure is well supported by co-crystal structure in PI3Kγ enzyme. In addition, a novel synthetic route was developed for these analogs.  相似文献   

7.
The identification of a novel series of Aurora kinase inhibitors and exploitation of their SAR is described. Replacement of the initial quinazoline core with a pyrimidine scaffold and modification of substituents led to a series of very potent inhibitors of cellular proliferation. MK-0457 (VX-680) has been assessed in Phase II clinical trials in patients with treatment-refractory chronic myelogenous leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph + ALL) containing the T315I mutation.  相似文献   

8.
Incorporation of a suitably-placed electrophilic group transformed a series of reversible BTK inhibitors based on carbazole-1-carboxamide and tetrahydrocarbazole-1-carboxamide into potent, irreversible inhibitors. Removal of one ring from the core of these compounds provided a potent irreversible series of 2,3-dimethylindole-7-carboxamides having excellent potency and improved selectivity, with the additional advantages of reduced lipophilicity and molecular weight.  相似文献   

9.
We report the design and synthesis of a series of novel Bruton’s Tyrosine Kinase (BTK) inhibitors with a carboxylic acid moiety in the ribose pocket. This series of compounds has demonstrated much improved off-target selectivities including adenosine uptake (AdU) inhibition compared to the piperidine amide series. Optimization of the initial lead compound 4 based on BTK enzyme inhibition, and human peripheral blood mononuclear cell (hPBMC) and human whole blood (hWB) activity led to the discovery of compound 40, with potent BTK inhibition, reduced off target activities, as well as favorable pharmacokinetic profile in both rat and dog.  相似文献   

10.
Bruton tyrosine kinase (BTK) is linked to multiple signalling pathways that regulate cellular survival, activation, and proliferation. A covalent BTK inhibitor has shown favourable outcomes for treating B cell malignant leukaemia. However, covalent inhibitors require a high reactive warhead that may contribute to unexpected toxicity, poor selectivity, or reduced effectiveness in solid tumours. Herein, we report the identification of a novel noncovalent BTK inhibitor. The binding interactions (i.e. interactions from known BTK inhibitors) for the BTK binding site were identified and incorporated into a structure-based virtual screening (SBVS). Top-rank compounds were selected and testing revealed a BTK inhibitor with >50% inhibition at 10 µM concentration. Examining analogues revealed further BTK inhibitors. When tested across solid tumour cell lines, one inhibitor showed favourable inhibitory activity, suggesting its potential for targeting BTK malignant tumours. This inhibitor could serve as a basis for developing an effective BTK inhibitor targeting solid cancers.  相似文献   

11.
We screened a series of 4-anilinoquinolines and 4-anilinoquinazolines and identified novel inhibitors of Mycobacterium tuberculosis (Mtb). The focused 4-anilinoquinoline/quinazoline scaffold arrays yielded compounds with high potency and the identification of 6,7-dimethoxy-N-(4-((4-methylbenzyl)oxy)phenyl)quinolin-4-amine (34) with an MIC90 value of 0.63–1.25 µM. We also defined a series of key structural features, including the benzyloxy aniline and the 6,7-dimethoxy quinoline ring, that are important for Mtb inhibition. Importantly the compounds showed very limited toxicity and scope for further improvement by iterative medicinal chemistry.  相似文献   

12.
Three series of 6,7-dimethoxyquinazoline derivatives substituted in the 4-position by aniline, N-methylaniline and aryloxy entities, targeting EGFR and VEGFR-2 tyrosine kinases, were designed and synthesized. Pharmacological activities of these compounds have been evaluated for their enzymatic inhibition of VEGFR-2 and EGFR and for their antiproliferative activities on various cancer cell lines. We have studied the impact of the variation in the 4-position substitution of the quinazoline core. Substitution by aryloxy groups led to new compounds which are selective inhibitors of VEGFR-2 enzyme with IC50 values in the nanomolar range in vitro.  相似文献   

13.
Cyclin-dependent kinase 2 (CDK2) has appeared as an important drug target over the years with a multitude of therapeutic potentials. To design compounds with enhanced inhibitory potencies against CDK2, 3D-QSAR and molecular fragment replacement studies were performed on the pyrazolo[4,3-h]quinazoline derivatives, a class of potent CDK2 inhibitors. The contours of 3D-QSAR model revealed important structural features of the inhibitors related to the active site of CDK2. Based on the pyrazolo[4,3-h]quinazoline core, the different substituents at three important points were replaced with diverse molecular fragments. The compounds resulting from fragments assembly with pyrazolo[4,3-h]quinazoline core were then scored with the robust 3D-QSAR model. Furthermore, the absorption, distribution, metabolism and excretion properties of these compounds were predicted by Volsurf to eliminate inappropriate compounds. Thirty-one new potential compounds were finally obtained. These results initiated us to further optimise and design new potential inhibitors.  相似文献   

14.
BTK is a promising target for the treatment of multiple diseases such as B cell malignances, asthma, and rheumatoid arthritis. Here, we report the discovery of a series of novel pyrimidine analogs as potent, highly selective, non-covalent inhibitors of BTK. Compound 25d demonstrated higher affinity to an unactivated conformation of BTK that resulted in an excellent kinase selectivity. Compound 25d showed a good oral bioavailability in mice, and significantly inhibits the PCA reaction in mice.  相似文献   

15.
Bruton’s tyrosine kinase (BTK) has emerged as an attractive target related to B-lymphocytes dysfunctions, especially hematologic malignancies and autoimmune diseases. In our study, a series of diphenylaminopyrimidine derivatives bearing dithiocarbamate moieties were designed and synthesized as novel BTK inhibitors for treatment of B-cell lymphoma. Among all these compounds, 30ab (IC50 = 1.15 ± 0.19 nM) displays similar or more potent inhibitory activity against BTK than spebrutinib (IC50 = 2.12 ± 0.32 nM) and FDA approved drug ibrutinib (IC50 = 3.89 ± 0.57 nM), which is attributed to close binding of 30ab with BTK predicted by molecular docking. In particular, 30ab exhibits enhanced anti-proliferative activity against B-lymphoma cell lines at the IC50 concentration of 0.357 ± 0.02 μM (Ramos) and 0.706 ± 0.05 μM (Raji), respectively, almost 10-fold better than ibrutinib and spebrutinib. In addition, 30ab displays stronger selectivity on B-cell lymphoma over other cancer cell lines than spebrutinib. Furthermore, 30ab efficiently blocks BTK downstream pathways and results in apoptosis of cancer cells. In vivo xenograft model evaluation demonstrates the significant efficacy and broad safety margin of 30ab in treatment of B-cell lymphoma. We propose that compound 30ab is a candidate for further study and development based on our current findings.  相似文献   

16.
Novel NS3/4A protease inhibitors comprising quinazoline derivatives as P2 substituent were synthesized. High potency inhibitors displaying advantageous PK properties have been obtained through the optimization of quinazoline P2 substituents in three series exhibiting macrocyclic P2 cyclopentane dicarboxylic acid and P2 proline urea motifs. For the quinazoline moiety it was found that 8-methyl substitution in the P2 cyclopentane dicarboxylic acid series improved on the metabolic stability in human liver microsomes. By comparison, the proline urea series displayed advantageous Caco-2 permeability over the cyclopentane series. Pharmacokinetic properties in vivo were assessed in rat on selected compounds, where excellent exposure and liver-to-plasma ratios were demonstrated for a member of the 14-membered quinazoline substituted P2 proline urea series.  相似文献   

17.
We have developed a series of orally efficacious IRAK4 inhibitors, based on a scaffold hopping strategy and using rational structure based design. Efforts to tackle low permeability and high efflux in our previously reported pyrrolopyrimidine series (Scott et al., 2017) led to the identification of pyrrolotriazines which contained one less formal hydrogen bond donor and were intrinsically more lipophilic. Further optimisation of substituents on this pyrrolotriazine core culminated with the discovery of 30 as a promising in vivo probe to assess the potential of IRAK4 inhibition for the treatment of MyD88 mutant DLBCL in combination with a BTK inhibitor. When tested in an ABC-DLBCL model with a dual MyD88/CD79 mutation (OCI-LY10), 30 demonstrated tumour regressions in combination with ibrutinib.  相似文献   

18.
Investigation of various heterocyclic core isosteres of imidazopyrazines 1 & 2 yielded purine derivatives 3 & 8 as potent and selective BTK inhibitors. Subsequent SAR studies of the purine series led to the discovery of 20 as a leading compound. Compound 20 is very selective when screened against a panel of 400 kinases and is a potent inhibitor in cellular assays of human B cell function including B-Cell proliferation and CD86 cell surface expression and exhibited in vivo efficacy in a mouse PCA model. Its X-ray co-crystal structure with BTK shows that the high selectivity is gained from filling a BTK specific lipophilic pocket. However, physical and ADME properties leading to low oral exposure hindered further development.  相似文献   

19.
Bruton's Tyrosine Kinase (BTK) is a member of the TEC kinase family that is expressed in cells of hematopoietic lineage (e.g., in B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible BTK inhibitor targeting Cys481 within the ATP-binding pocket, for example ibrutinib, has been applied in the treatment of B-cell malignancies. Starting from a fragment hit, we discovered a novel series of potent covalent irreversible BTK inhibitors that occupy selectivity pocket of the active site of the BTK kinase domain. Guided by X-ray structures and a fragment-based drug design (FBDD) approach, we generated molecules showing comparable cellular potency to ibrutinib and higher kinome selectivity against undesirable off-targets like EGFR.  相似文献   

20.
In the present study, a series of fourteen 2-mercapto-4(3H)-quinazolinone derivatives was synthesised and evaluated as potential inhibitors of the human monoamine oxidase (MAO) enzymes. Quinazolinone is the oxidised form of quinazoline, and although this class has not yet been extensively explored as MAO inhibitors, it has been shown to possess a wide variety of biological activities. Among the quinazolinone derivatives investigated, seven compounds (IC50?<?1?µM) proved to be potent and specific MAO-B inhibitors, with the most potent inhibitor, 2-[(3-iodobenzyl)thio]quinazolin-4(3H)-one, exhibiting an IC50 value of 0.142?μM. Further investigation showed that this inhibitor is a reversible and competitive inhibitor of MAO-B with a Ki value of 0.068?µM. None of the test compounds were MAO-A inhibitors. Analysis of the structure-activity relationships (SARs) for MAO-B inhibition shows that substitution on the C2 position of quinazolinone with a benzylthio moiety bearing a Cl, Br or I on the meta position yields the most potent inhibitors of the series. In contrast, substitution with the unsubstituted benzylthio moiety (IC50?=?3.03?µM) resulted in significantly weaker inhibition activity towards MAO-B. This study suggests that quinazolinones are promising leads for the development of selective MAO-B inhibitors which may be used for the treatment of neurodegenerative disorders such as Parkinson’s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号