首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the incidence of HIV-associated dementia (HAD) has declined, HIV-associated neurocognitive disorders (HAND) remain a significant health problem despite use of highly active antiretroviral therapy. In addition, the incidence and/or severity of HAND/HAD are increased with concomitant use of drugs of abuse, such as cocaine, marijuana, and methamphetamine. Furthermore, exposure to most drugs of abuse increases brain levels of dopamine, which has been implicated in the pathogenesis of HIV. This review evaluates the potential role of dopamine in the potentiation of HAND/HAD by drugs of abuse. In the brain, multiplication of HIV in infected macrophages/microglia could result in the release of HIV proteins such as gp120 and Tat, which can bind to and impair dopamine transporter (DAT) functions, leading to elevated levels of dopamine in the dopaminergic synapses in the early asymptomatic stage of HIV infection. Exposure of HIV-infected patients to drugs of abuse, especially cocaine and methamphetamine, can further increase synaptic levels of dopamine via binding to and subsequently impairing the function of DAT. This accumulated synaptic dopamine can diffuse out and activate adjacent microglia through binding to dopamine receptors. The activation of microglia may result in increased HIV replication as well as increased production of inflammatory mediators such as tumor necrosis factor (TNF)-alpha and chemokines. Increased HIV replication can lead to increased brain viral load and increased shedding of HIV proteins, gp120 and Tat. These proteins, as well as TNF-alpha, can induce cell death of adjacent dopaminergic neurons via apoptosis. Autoxidation and metabolism of accumulated synaptic dopamine can lead to generation of reactive oxygen species (hydrogen peroxide), quinones, and semiquinones, which can also induce apoptosis of neurons. Increased cell death of dopaminergic neurons can eventually lead to dopamine deficit that may exacerbate the severity and/or accelerate the progression of HAND/HAD.  相似文献   

2.
Drug abuse is a major comorbidity of HIV infection and cognitive disorders are often more severe in the drug abusing HIV infected population. CD14+CD16+ monocytes, a mature subpopulation of peripheral blood monocytes, are key mediators of HIV neuropathogenesis. Infected CD14+CD16+ monocyte transmigration across the blood brain barrier mediates HIV entry into the brain and establishes a viral reservoir within the CNS. Despite successful antiretroviral therapy, continued influx of CD14+CD16+ monocytes, both infected and uninfected, contributes to chronic neuroinflammation and the development of HIV associated neurocognitive disorders (HAND). Drug abuse increases extracellular dopamine in the CNS. Once in the brain, CD14+CD16+ monocytes can be exposed to extracellular dopamine due to drug abuse. The direct effects of dopamine on CD14+CD16+ monocytes and their contribution to HIV neuropathogenesis are not known. In this study, we showed that CD14+CD16+ monocytes express mRNA for all five dopamine receptors by qRT-PCR and D1R, D5R and D4R surface protein by flow cytometry. Dopamine and the D1-like dopamine receptor agonist, SKF38393, increased CD14+CD16+ monocyte migration that was characterized as chemokinesis. To determine whether dopamine affected cell motility and adhesion, live cell imaging was used to monitor the accumulation of CD14+CD16+ monocytes on the surface of a tissue culture dish. Dopamine increased the number and the rate at which CD14+CD16+ monocytes in suspension settled to the dish surface. In a spreading assay, dopamine increased the area of CD14+CD16+ monocytes during the early stages of cell adhesion. In addition, adhesion assays showed that the overall total number of adherent CD14+CD16+ monocytes increased in the presence of dopamine. These data suggest that elevated extracellular dopamine in the CNS of HIV infected drug abusers contributes to HIV neuropathogenesis by increasing the accumulation of CD14+CD16+ monocytes in dopamine rich brain regions.  相似文献   

3.
Approximately 30-50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV(+) individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120(IIIB) on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca(2+), we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV(+) patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection.  相似文献   

4.
As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14+CD16+ monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14+CD16+ monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14+CD16+ monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14+ cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14+CD16+ monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14+CD16+ monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14+CD16+ monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.  相似文献   

5.
It is now well established that HIV-1 requires interactions with both CD4 and a chemokine receptor on the host cell surface for efficient infection. The expression of the CCR5 chemokine receptor in human macrophages facilitates HIV-1 entry into these cells, which are considered important in HIV pathogenesis not only as viral reservoirs but also as modulators of altered inflammatory function in HIV disease and AIDS. LPS, a principal constituent of Gram-negative bacterial cell walls, is a potent stimulator of macrophages and has been shown to inhibit HIV infection in this population. We now present evidence that one mechanism by which LPS mediates its inhibitory effect on HIV-1 infection is through a direct and unusually sustained down-regulation of cell-surface CCR5 expression. This LPS-mediated down-regulation of CCR5 expression was independent of de novo protein synthesis and differed from the rapid turnover of these chemokine receptors observed in response to two natural ligands, macrophage-inflammatory protein-1alpha and -1beta. LPS did not act by down-regulating CCR5 mRNA (mRNA levels actually increased slightly after LPS treatment) or by enhancing the degradation of internalized receptor. Rather, the observed failure of LPS-treated macrophages to rapidly restore CCR5 expression at the cell-surface appeared to result from altered recycling of chemokine receptors. Taken together, our results suggest a novel pathway of CCR5 recycling in LPS-stimulated human macrophages that might be targeted to control HIV-1 infection.  相似文献   

6.
We demonstrate that soluble CD16 (sCD16; soluble Fc gamma RIII), a natural ligand of CR3, inhibits the infection of monocytes by primary R5 HIV-1 strain opsonized with serum of seronegative individuals. Inhibition of monocyte infection by sCD16 was similar to that observed with anti-CR3 mAbs, indicating that opsonized HIV may use a CR3-dependent pathway for entry in monocytic cells. Cultured human monocytes express both CR3 (CD11b/CD18) and CCR5 receptors. RANTES, the natural ligand of CCR5, inhibited infection of monocytes with unopsonized HIV particles and partially that of monocytes infected with HIV particles opsonized with complement-derived fragments. Although HIV-infected monocytes from homozygous CCR5 Delta 32/Delta 32 (CCR5(-/-)) individuals produce low levels of p24, cells infected with opsonized particles produced higher levels of p24 than cells infected with unopsonized particles. Our results thus suggest that CR3 may represent an alternative coreceptor to CCR5 of opsonized primary R5 virus entry into monocytes/macrophages. We also observed that the concentration of sCD16 is greatly decreased in sera of HIV-infected patients with low lymphocyte CD4(+) counts. Taken together, our findings suggest that sCD16, present in plasma, may play an important role in controlling HIV-1 spread.  相似文献   

7.
The alpha-chemokine receptor fusin (CXCR-4) and beta-chemokine receptor CCR5 serve as entry cofactors for T-cell (T)-tropic and macrophage (M)-tropic human immunodeficiency virus type 1 (HIV-1) strains, respectively, when expressed with CD4 in otherwise nonpermissive cells. Some M-tropic and dual-tropic strains can also utilize other beta-chemokine receptors, such as CCR2b and CCR3. A mutation of CCR5 (delta ccr5) was recently found to be common in certain populations and appears to confer protection against HIV-1 in vivo. Here, we show that this mutation results in a protein that is expressed intracellularly but not on the cell surface. Primary CD4 T cells from delta ccr5 homozygous individuals were highly resistant to infection with prototype M-tropic HIV-1 strains, including an isolate (YU-2) that uses CCR5 and CCR3, but were permissive for both a T-tropic strain (3B) and a dual-tropic variant (89.6) that uses CXCR-4, CCR5, CCR3, or CCR2b. These cells were also resistant to M-tropic patient isolates but were readily infected by T-tropic patient isolates. Primary macrophages from delta ccr5 homozygous individuals were also resistant to infection with M-tropic strains, including YU-2, but the dual-tropic strain 89.6 was able to replicate in them even though macrophages are highly resistant to CXCR-4-dependent T-tropic isolates. These data show that CCR5 is the essential cofactor for infection of both primary macrophages and T lymphocytes by most M-tropic strains of HIV-1. They also suggest that CCR3 does not function for HIV-1 entry in primary lymphocytes or macrophages, but that a molecule(s) other than CCR5 can support entry into macrophages by certain virus isolates. These studies further define the cellular basis for the resistance to HIV-1 infection of individuals lacking functional CCR5.  相似文献   

8.
Infection with the human immunodeficiency virus (HIV) remains a threat to global health. Since its discovery, many efforts have been directed at understanding the mechanisms and consequences of infection. Although there have been substantial advances since the advent of antiretroviral therapy, there are still complications that significantly compromise the health of infected patients, particularly, chronic inflammation and HIV-associated neurocognitive disorders (HAND). In this review, a new perspective is addressed in the field of HIV, where the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is the protagonist. We comprehensively discuss the available evidence implicating α7-nAChRs in the context of HIV and provide possible explanations about its role in HAND and inflammation in both the central nervous system and the periphery.  相似文献   

9.
10.
11.
The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2) and ethinyl estradiol (EE) in HIV-infection of CD4+ T-cells and macrophages. Purified CD4+ T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4+ T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4+ T-cell infection. Reduction of HIV-infection induced by E2 in CD4+ T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2–treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1) infection in mononuclear phagocyte lineage cells (monocytes, macrophages, and microglia) is a critical component in the pathogenesis of viral infection. Viral replication in macrophages serves as a reservoir, a site of dissemination, and an instigator for neurological sequelae during HIV-1 disease. Recent studies demonstrated that chemokine receptors are necessary coreceptors for HIV-1 entry which determine viral tropism for different cell types. To investigate the relative contribution of the β-chemokine receptors CCR3 and CCR5 to viral infection of mononuclear phagocytes we utilized a panel of macrophage-tropic HIV-1 strains (from blood and brain tissue) to infect highly purified populations of monocytes and microglia. Antibodies to CD4 (OKT4A) abrogated HIV-1 infection. The β chemokines and antibodies to CCR3 failed to affect viral infection of both macrophage cell types. Antibodies to CCR5 (3A9) prevented monocyte infection but only slowed HIV replication in microglia. Thus, CCR5, not CCR3, is an essential receptor for HIV-1 infection of monocytes. Microglia express both CCR5 and CCR3, but antibodies to them fail to inhibit viral entry, suggesting the presence of other chemokine receptors for infection of these cells. These studies demonstrate the importance of mononuclear phagocyte heterogeneity in establishing HIV-1 infection and persistence.  相似文献   

13.
The chemokine receptor CCR5 and to a lesser extent CCR3 and CCR2b have been shown to serve as coreceptors for human immunodeficiency virus type 1 (HIV-1) entry into blood- or tissue-derived macrophages. Therefore, we examined the expression of the chemokine receptors CCR1, CCR2b, CCR3, CCR5, and CXCR4 as RNAs or as membrane-expressed antigens in monocytes maturing into macrophages and correlated these results with the susceptibility of macrophages to HIV-1 infection, as measured by their concentrations of extracellular p24 antigen and levels of intracellular HIV DNA by quantitative PCR. There was little change in levels of CCR1, CCR2b, and CCR5 RNAs. CCR3 RNA and surface antigen were undetectable throughout maturation of adherent monocytes over 10 days. CXCR4 RNA and membrane antigen were strongly expressed in newly adherent monocytes, but their levels declined at day 7. The amounts of CCR5 RNA remained stable, but the amounts of CCR5 antigen increased from undetectable to peak levels at day 7 and then declined slightly at day 10. Levels of susceptibility to laboratory (HIV-1BaL) and clinical strains of HIV-1 showed parallel kinetics, peaking at day 7 and then decreasing at days 10 to 14. The concordance of levels of HIV DNA and p24 antigen suggested that the changes in susceptibility with monocyte maturation were at or immediately after entry and correlated well with CCR5 expression and inversely with CXCR4 expression.  相似文献   

14.
15.
HIV coreceptors, cell tropism and inhibition by chemokine receptor ligands.   总被引:6,自引:0,他引:6  
HIV is a persistent virus that survives and replicates despite an onslaught by the host's immune system. A strategy for cell entry, requiring the use of two receptors, has evolved that may help evade neutralizing antibodies. HIV and SIV usually require both CD4 and a seven transmembrane (7TM) coreceptor for infection. At least eleven different 7TM coreceptors have been identified that confer HIV and/or SIV entry. For HIV-1, the major coreceptors are CCR5 and CXCR4, while the role of other coreceptors for replication and cell tropism in vivo is currently unclear. Polymorphisms in the CCR5 gene that reduce CCR5 expression levels, protect against disease progression, suggesting that drugs targeted to CCR5 could be effective. Such therapies however will not work if HIV simply adapts to use alternative coreceptors. In the light of these themes, this review will discuss the following topics: (i) the coreceptors used by primary HIV-1 and HIV-2 viruses, (ii) the properties and coreceptors of HIV-2 strains that infect cells without CD4, (iii) the role of coreceptors in HIV cell tropism and particularly macrophage infection and (iv) the properties of chemokine receptor ligands that block HIV infection.  相似文献   

16.
Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1(ADA) infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages.  相似文献   

17.
HIV is a persistent virus that survives and replicates despite an onslaught by the host's immune system. A strategy for cell entry, requiring the use of two receptors, has evolved that may help evade neutralizing antibodies. HIV and SIV usually require both CD4 and a seven transmembrane (7TM) coreceptor for infection. At least eleven different 7TM coreceptors have been identified that confer HIV and/ or SIV entry. For HIV-1, the major coreceptors are CCR5 and CXCR4, while the role of other coreceptors for replication and cell tropism in vivo is currently unclear. Polymorphisms in the CCR5 gene that reduce CCR5 expression levels, protect against disease progression, suggesting that drugs targeted to CCR5 could be effective. Such therapies however will not work if HIV simply adapts to use alternative coreceptors. In the light of these themes, this review will discuss the following topics: (i) the coreceptors used by primary HIV-1 and HIV-2 viruses, (ii) the properties and coreceptors of HIV-2 strains that infect cells without CD4, (iii) the role of coreceptors in HIV cell tropism and particularly macrophage infection and (iv) the properties of chemokine receptor ligands that block HIV infection.  相似文献   

18.
HIV particles that use the chemokine receptor CXCR4 as a coreceptor for entry into cells (X4-HIV) inefficiently transmit infection across mucosal surfaces [1], despite their presence in seminal fluid and mucosal secretions from infected individuals [2] [3] [4]. In addition, although intestinal lymphocytes are susceptible to infection with either X4-HIV particles or particles that use the chemokine receptor CCR5 for viral entry (R5-HIV) during ex vivo culture [5], only systemic inoculation of R5-chimeric simian-HIV (S-HIV) results in a rapid loss of CD4(+) intestinal lymphocytes in macaques [6]. The mechanisms underlying the inefficient capacity of X4-HIV to transmit infection across mucosal surfaces and to infect intestinal lymphocytes in vivo have remained elusive. The CCR5 ligands RANTES, MIP-1alpha and MIP-1beta suppress infection by R5-HIV-1 particles via induction of CCR5 internalization, and individuals whose peripheral blood lymphocytes produce high levels of these chemokines are relatively resistant to infection [7] [8] [9]. Here, we show that the CXCR4 ligand stromal derived factor-1 (SDF-1) is constitutively expressed by mucosal epithelial cells at sites of HIV transmission and propagation. Furthermore, CXCR4 is selectively downmodulated on intestinal lymphocytes within the setting of prominent SDF-1 expression. We postulate that mucosally derived SDF-1 continuously downmodulates CXCR4 on resident HIV target cells, thereby reducing the transmission and propagation of X4-HIV at mucosal sites. Moreover, such a mechanism could contribute to the delayed emergence of X4 isolates, which predominantly occurs during the later stages of the HIV infection.  相似文献   

19.
HIV-1 infection leads to a disease that attacks the central regulatory mechanisms of the immune response. As mucosal tissue is one of the primary sites infected with HIV in vivo, we examined the effects of HIV exposure on human mast cells, important components of mucosal defense. Using the human mast cell line, HMC-1, which expresses CXCR4 but not CCR5 on the cell surface, we found that several HIV-1 X4 tropic lab (IIIB, RF) and primary isolates but not R5 (BAL, ADA) isolates productively infected these cells. Furthermore, stem cell factor-dependent mast cells derived from primary fetal liver or cord blood cultures were also productively infected with both X4 and R5 HIV-1 strains. Infection was blocked at the level of viral entry using monoclonal antibodies to CXCR4 and CD4. Treatment of HMC-1 with TNF-alpha and TGF-beta stimulated cell surface expression of CCR5 and up-regulated expression of both CCR5 and CXCR4 on primary mast cells, leading to increased susceptibility to both X4 and R5 viral isolates. HIV-1 infection also resulted in histamine release from these mast cells, most due in part to HIV-mediated cell death. These results demonstrate that X4 viruses can use CD4 and the CXCR4 receptor to infect mast cells, suggesting that mast cell-T cell interactions may contribute to HIV mediated immune dysfunction in the mucosa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号