首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
C9orf86 which is a novel subfamily within the Ras superfamily of GTPases, is overexpressed in the majority of primary breast tumors. Few functional studies have focused on the C9orf86 protein; therefore, in this study, we explored the role of C9orf86 in breast carcinogenesis. In our study, we found that silencing of C9orf86 by siRNA in MCF-7 and SK-BR-3 cells resulted in suppressed cell proliferation as well as in vitro cell invasion capabilities. Moreover, knockdown of C9orf86 inhibited tumor growth in nude mice. Cell cycle and apoptotic assays showed that the anti-proliferative effect of C9orf86-siRNA was mediated by arresting cells in the G1 phase and promoting apoptosis. In addition, we found that patients with high levels of C9orf86 expression showed a significant trend towards worse survival compared to patients with low C9orf86 expression (P = 0.002). These results provide evidence that C9orf86 represents a novel and clinically useful biomarker for BC patients and plays an important role during the progression of BC.  相似文献   

5.
STC1 is a glycoprotein hormone involved in calcium/phosphate (Pi) homeostasis. There is mounting evidence that STC1 is tightly associated with the development of cancer. But the function of STC1 in cancer is not fully understood. Here, we found that STC1 is down-regulated in Clinical tissues of cervical cancer compared to the adjacent normal cervical tissues (15 cases). Subsequently, the expression of STC1 was knocked down by RNA interference in cervical cancer CaSki cells and the low expression promoted cell growth, migration and invasion. We also found that STC1 overexpression inhibited cell proliferation and invasion of cervical cancer cells. Moreover, STC1 overexpression sensitized CaSki cells to drugs. Further, we showed that NF-κB p65 protein directly bound to STC1 promoter and activated the expression of STC1 in cervical cancer cells. Thus, these results provided evidence that STC1 inhibited cell proliferation and invasion through NF-κB p65 activation in cervical cancer.  相似文献   

6.
BackgroundCancer stem cells (CSCs) are proposed to be responsible for high recurrence rate in cervical carcinoma. Reagents that can suppress the proliferation and differentiation of CSCs would provide new opportunities to fight against tumor recurrence. Doxycycline has been reported as a potential anti-cancer compound. However, few studies investigated its inhibitory effect against cervical cancer stem cells.MethodsHeLa cells were cultured in cancer stem cell conditional media in a poly-hema-treated dish. In this non-adhesive culture system, HeLa cells were treated with cisplatin until some cells survived and formed spheroids, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every three days for five times. The tumor xenografts with CSC enrichment were cultured in cancer stem cell specific medium again to form tumorsphere, which we called HeLa-CSCs. Expression of cancer stem cell markers in HeLa-CSCs was measured by flow cytometry and qPCR. HeLa-CSCs were then treated with doxycycline. Proliferation and differentiation rates were determined by the size of spheres formed in vitro and tumor formed in vivo.ResultsWe developed a new strategy to selectively enrich CSCs from human cervical carcinoma cell line HeLa, and these HeLa-CSCs are CD133+/CD49f+ cell populations with significantly enhanced expression of stem cell markers. When these HeLa-CSCs were treated with doxycycline, the colony formation, proliferation, migration and invasion, and differentiation were all suppressed. Meanwhile, stem cell markers SOX-2, OCT-4, NANOG, NOTCH and BMI-1 decreased in doxycycline treated cells, so as the surface markers CD133 and CD49f. Furthermore, proliferation markers Ki67 and PCNA were also decreased by doxycycline treatment in the in vivo xenograft mouse model.ConclusionsCancer stem cells are enriched from sphere-forming and chemoresistant HeLa-derived tumor xenografts in immunodeficient mice. Doxycycline inhibits proliferation, invasion, and differentiation, and also induces apoptosis of these HeLa-CSCs in vitro and in vivo.  相似文献   

7.
Death receptor (DR3) 3 is a member of the TNFR superfamily. Its ligand is TNF-like ligand 1A (TL1A), a member of the TNF superfamily. TL1A/DR3 interactions have been reported to modulate the functions of T cells, NK, and NKT cells and play a crucial role in driving inflammatory processes in several T-cell-dependent autoimmune diseases. However, TL1A expression and effects on B cells remain largely unknown. In this study, we described for the first time that B cells from human blood express significant amounts of DR3 in response to B cell receptor polyclonal stimulation. The relevance of these results has been confirmed by immunofluorescence analysis in tonsil and spleen tissue specimens, which showed the in situ expression of DR3 in antigen-stimulated B cells in vivo. Remarkably, we demonstrated that TL1A reduces B-cell proliferation induced by anti-IgM-antibodies and IL-2 but did not affect B-cell survival, suggesting that TL1A inhibits the signal(s) important for B-cell proliferation. These results revealed a novel function of TL1A in modulating B-cell proliferation in vitro and suggest that TL1A may contribute to homeostasis of effector B-cell functions in immune response and host defense, thus supporting the role of the TL1A/DR3 functional axis in modulating the adaptive immune response.  相似文献   

8.
9.
C3H1型的锌指蛋白36 (zinc finger protein 36,C3H type-like 1,ZFP36L1)是一种高度保守且具有CCCH型RNA结合结构域的蛋白质。近年来,ZFP36L1在多种肿瘤中的作用被报道,但是在舌癌中的表达型和作用机制尚不清楚。Western印记结合荧光定量PCR检测发现,ZFP36L1在舌癌细胞中的表达明显低于人永生化表皮细胞Hacat。在相对低表达ZFP36L1的舌癌细胞SCC15和SCC25中,稳定过表达ZFP36L1,细胞计数实验发现,SCC15细胞的数目由(4.768±0.09225)×10~3个降低到(3.089±0.09745)×10~3个,SCC25细胞的数目由(6.274±0.01311)×10~3个降低到(4.037±0.01173)×10~3个;平板克隆实验提示,SCC15和SCC25细胞克隆数目是对照组的0.67倍,0.68倍,0.7倍和0.59倍,0.57倍,0.59倍;过表达ZFP36L1组G_1期的SCC15和SCC25细胞分别由61.82±0.8933%增加到88.72%±0.8378,由56.31%±1.029增加到71.7%±0.9303;而S期的细胞由25.21%±0.9865减少到11.31%±0.6567,由28.58%±0.8182减少到18.61%±0.6798。过表达ZFP36L1能明显下调SCC15和SCC25细胞中细胞周期蛋白D1(cyclinD1)的蛋白质水平。过表达ZFP36L1组的SCC15和SCC25细胞中,细胞周期蛋白D1 mRNA的表达量分别是对照组的0.217倍和0.175倍。在舌癌细胞中,上调细胞周期蛋白D1的表达水平可消除由过表达ZFP36L1引起的细胞增殖能力降低。总之,ZFP36L1在舌癌中呈低表达;可通过下调细胞周期蛋白D1的表达,抑制舌癌细胞增殖。  相似文献   

10.
11.
Pancreatic cancer is an aggressive disease with dismal prognosis. It is of paramount importance to understand the underlying etiological mechanisms and identify novel, consistent, and easy-to-apply prognostic factors for precision therapy. TUSC3 (tumor suppressor candidate 3) was identified as a potential tumor suppressor gene and previous study showed TUSC3 is decreased in pancreatic cancer at mRNA level, but its putative tumor suppressor function remains to be verified. In this study, TUSC3 expression was found to be suppressed both at mRNA and protein levels in cell line models as well as in clinical samples; decreased TUSC3 expression was associated with higher pathological TNM staging and poorer outcome. In three pairs of cell lines with different NF-κB activity, TUSC3 expression was found to be reversely correlated with NF-κB activity. TUSC3-silenced pancreatic cancer cell line exhibited enhanced potential of proliferation, migration and invasion. In an orthotopic implanted mice model, TUSC3 silenced cells exhibited more aggressive phenotype with more liver metastasis. In conclusion, the current study shows that decreased immunological TUSC3 staining is a factor prognostic of poor survival in pancreatic cancer patients and decreased TUSC3 promotes pancreatic cancer cell proliferation, invasion and metastasis. The reverse correlation between NF-κB activity and TUSC3 expression may suggest a novel regulation pattern for this molecule.  相似文献   

12.
目的:体外水平探讨利用化学修饰的小干扰RNA(small interfering RNA,siRNA)敲减VEGFR-1基因治疗乳腺癌的可行性和特异性.方法:采用阳离子脂质Lipofectamine2000TM作为转染试剂将同时针对人和大鼠VEGFR-1基因的小干扰RNA转染人乳腺癌细胞系MCF-7和大鼠乳腺癌细胞系SHZ-88,敲减VEGFR-1基因的表达;采用四甲基偶氮唑蓝(MTT)法,半定量RT-PCR,蛋白印迹试验等检测VEGFR-1mRNA和蛋白表达及细胞增殖变化.结果:靶向VEGFR-1基因的siRNA转染细胞后,两种细胞增殖均被抑制,同浓度两细胞株指标无显著差异,VEGFR-1mRNA和蛋白的表达均明显降低.各对照组指标则无显著变化.结论:化学修饰的siRNA介导的RNAi能成功敲减VEGFR-1基因的表达、抑制乳腺癌细胞增殖.  相似文献   

13.
该文探讨了SIK1作为miR-93新的靶基因对前列腺癌细胞增殖、侵袭和迁移的抑制作用.采用重组质粒pcDNA3.1-SIK1上调前列腺癌细胞中SIK1的表达后,利用CCK8和克隆形成实验检测细胞增殖;利用细胞划痕和Transwell实验检测细胞侵袭和迁移;利用West-ern blot检测E-cadherin和Vime...  相似文献   

14.
目的:研究miR-195通过靶向调控趋化因子5促进胃癌细胞增殖、转移及侵袭的分子机制。方法:选取MGC803及NCI-N87细胞,根据转染不同分为:miR-NC组(空质粒),miR-195-mimics组(模拟序列)。实时荧光定量PCR法检测miR-195表达;MTT检测细胞增殖能力;Transwell侵袭实验检测细胞侵袭力;细胞划痕实验检测细胞转移能力;流式细胞术检测细胞凋亡情况;Western blot检测chemokine 5表达水平;Spearman相关分析miR-195及chemokine 5相关性。荧光素酶实验验证miR-195与chemokine 5的靶向关系。结果:miR-195-mimics组细胞miR-195水平高于miR-NC组(P0.05);miR-195 mimics组第1、2、3、4 d细胞活力低于miR-NC组(P0.05);miR-195 mimics组G1细胞高于miR-NC组,G2期、S期细胞低于miR-NC组,G2/S期细胞比值低于miR-NC组(P0.05);miR-195 mimics组划痕距离大于miR-NC组(P0.05);miR-195 mimics组细胞侵袭数低于miR-NC组(P0.05);miR-195-mimics组细chemokine 5蛋白含量低于miR-NC组(P0.05);miR-195 m RNA水平与chemokine 5蛋白含量负相关(r=-0.398,P=0.00);miR-195可直接靶向chemokine 5。结论:miR-195可通过靶向chemokine 5促进胃癌MGC803及NCI-N87细胞的增殖、转移及侵袭。  相似文献   

15.
Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs), but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1) was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.  相似文献   

16.
CHIP, a co-chaperone protein that interacts with Hsc/Hsp70, has been shown to be under-expressed in pancreatic cancer cells and has demonstrated a potential tumor suppressor property. Nevertheless, the underlying mechanisms of CHIP regulation in pancreatic cancer cells remain unknown. In this study, we found that miR-1178 decreased the translation of the CHIP protein by targeting the 3′-UTR region. We observed that over-expression of miR-1178 facilitated the proliferation, G1/S transition, migration and invasion of pancreatic cancer cells. Conversely, the inhibition of miR-1178 expression significantly suppressed these phenotypes. Furthermore, CHIP over-expression abrogated miR-1178-induced cell proliferation and invasion. Our data suggest that miR-1178 acts as an oncomiR in pancreatic cancer cells by inhibiting CHIP expression.  相似文献   

17.
NPM1突变基因表达抑制K562白血病细胞体外增殖和侵袭   总被引:2,自引:1,他引:1  
核仁磷酸蛋白(nucleophosmin,NPM1)突变是近年发现的在急性髓系白血病中发挥重要作用的基因改变,为探讨NPM1突变对K562白血病细胞体外增殖和侵袭能力的影响,将载体pEGFPC1-NPM1-mA转染K562细胞系,构建稳定表达NPM1突变蛋白的白血病细胞株(K562-mA)。利用细胞生长曲线观察细胞体外增殖能力;流式细胞仪检测细胞周期进程改变;细胞粘附、Transwell实验分别用以观察细胞体外粘附、迁移及侵袭能力。结果发现,NPM1突变转染后K562细胞体外增殖能力明显减弱;同时G1期细胞比例明显增高,S期细胞比例显著减低。与未处理组和空载体转染组细胞相比,K562-mA细胞体外迁移能力有所增加,但细胞粘附及侵袭能力却明显减弱。提示NPM1突变基因的表达能够抑制白血病细胞体外增殖和侵袭能力,为进一步深入探讨NPM1突变在白血病发生发展中的调控机制奠定了良好的基础。  相似文献   

18.
The aim of this study is to investigate the influence of Lenti-EGFP-NeuroD-miR, RNAi lentiviral expression vector, on the expression level of NeuroD and migration, and invasion of PANC-1 cell line. PANC-1 cells were cultured and cotransfected with Lenti-EGFP-NeuroD-miR and Lenti-GFP. The infection rate of lentivirus was determined by fluorescence. The interfering effection by the expression of NeuroD mRNA in PANC-1 cells was analyzed by real-time PCR after transfected. Biological behavior of PANC-1 cells transinfected was observed, and the migration and invasion were studied by transwell assay. Intrapancreatic allografts model in nude mice was established to observe the effects of NeuroD on tumorigenesis, tumor growth, and invasion in vivo. The expression of NeuroD mRNA decreased significantly after RNAi lentivirus transinfecting PANC-1 cell. The cell’s migration and invasion ability decreased obviously as soon as down regulate of NeuroD in PANC-1 cells. Comparing with control group, the tumors were smaller in size and the invasiveness was inhibited after 8 weeks intrapancreatic allografts in nude mice. Lenti-EGFP-NeuroD-miR transfected into PANC-1 cells shows a stable, effective, and especial blocking expression of NeuroD in mRNA level. The RNAi of lentiviral vector target NeuroD can reduce the migration and invasion abilities of PANC-1 cells.  相似文献   

19.

Background

The dysregulation of oncogenes and tumor suppressor genes plays an important role in many cancers, including hepatocellular carcinoma (HCC), which is one of the most common cancers in the world. In a previous microarray experiment, we found that DLGAP5 is overexpressed in HCCs. However, whether the up-regulation of DLGAP5 contributes to hepatocarcinogenesis remains unclear.

Methodology/Principal Findings

In this study, we showed that DLGAP5 was significantly up-regulated in 76.4% (168 of 220) of the analyzed HCC specimens when compared with adjacent liver tissue. DLGAP5 overexpression was evident in 25% (22 of 88) of the HCC specimens without AFP expression, suggesting that DLGAP5 may be a novel biomarker for HCC pathogenesis. The silencing of DLGAP5 gene expression by RNA interference significantly suppressed cell growth, migration and colony formation in vitro. The expression level of DLGAP5 was also found to be related to the methylation level of its promoter in the HCC specimens.

Conclusions/Significance

Taken together, these data suggest that the expression of DLGAP5 is regulated by methylation and that the up-regulation of DLGAP5 contributes to HCC tumorigenesis by promoting cell proliferation.  相似文献   

20.
miR-145通过靶向吞噬和细胞活力蛋白1抑制乳腺癌细胞侵袭   总被引:1,自引:0,他引:1  
吞噬和细胞活力蛋白1(engulfment and cell motility protein 1,ELMO1)可以促进多种癌细胞的侵袭和转移,但ELMO1的表达是否受miRNA的调控鲜有研究。本研究旨在探讨miR-145与ELMO1表达的相关性,以及miR-145通过结合ELMO1的mRNA对乳腺癌侵袭的影响。通过TargetScan (http://www.targetscan.org/)靶基因预测软件预测与ELMO1的3′UTR结合的miR-145。荧光素酶结果证实两者互补结合。Transwell侵袭结果显示,miR-145组和siELMO1+miR-145组MDA-231乳腺癌细胞穿膜数较对照组分别降低40%(P<0.05)和79%(P<0.05)。siELMO1+miR-145组和siELMO1组细胞穿膜数则无显著差异(P>0.05)。结果提示,miR-145通过与ELMO1的mRNA结合抑制细胞侵袭。qRT-PCR显示,低侵袭的MCF-7乳腺癌细胞miR-145的表达量较高侵袭的MDA-435细胞高80%(P<0.05),较MDA-231乳腺癌细胞高75%(P<0.05),即miR-145与癌细胞侵袭能力呈负相关。Western印迹结果表明,miR-145组ELMO1表达量低于阴性对照组,miR-145 抑制组ELMO1表达量高于抑制剂NC组(P<0.05),证明miR-145抑制ELMO1的表达。qRT-PCR显示,过表达miR-145后ELMO1 mRNA含量与对照组无显著差异(P>0.05)。结果提示,miR-145对ELMO1的调控作用通过抑制其翻译实现。F-肌动蛋白聚合实验表明,miR-145组和阴性对照组于20 s和60 s时F-肌动蛋白聚合结果存在明显区别(P<0.05)。Western 印迹结果表明,miR-145组活化的Rac1表达量较阴性对照组降低60%(P<0.05),抑制剂NC组活化的Rac1较miR-145 抑制组降低55%(P<0.05);miR-145组磷酸化的整合素β1较对照组于15 min时降低42%(P<0.05),于30 min时降低31%(P<0.05)。由此得出的miR-145过表达显著促进乳腺癌细胞F-肌动蛋白聚合、Rac1活化和整合素β1磷酸化结论。综上所述,miR-145通过靶向ELMO1的 mRNA抑制ELMO1翻译,从而抑制乳腺癌的侵袭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号