首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy. The synthesis and structure–activity relationships of a series of novel tetrahydropyrazinoisoquinolinone 5-HT2C receptor agonists are presented. Several members of this series were identified as potent 5-HT2C receptor agonists with high functional selectivity against the 5-HT2A and 5-HT2B receptors and reduced food intake in an acute rat feeding model upon oral dosing.  相似文献   

2.
Over the last several years the use of molecular cloning technology has revealed a vast diversity among serotonin (5-HT)receptors, where by what was previously thought to be a family of three pharmacologically defined classes of 5-HT receptors is actually composed of seven distinct subfamilies designated 5-HT1–7. The 5-HT1, 5-HT2, and 5-HT5 subfamilies currently consist of five, three and two subtypes respectively while the 5-HT3,5-HT4, 5-HT6, and 5-HT7 “subfamilies” have at present one subtype each. Fourteen separate genes encode 13 receptors which fall in the superfamily of G protein-coupled receptors and one ligand-gated ion channel receptor. Our lab has contributed to the elucidation of this subtype diversity by cloning the cDNAs from both rat and human encoding the 5-HT2B receptor. This receptor subtype is equally homologous (approximately 70%) to the 5-HT2A and 5-HT2C receptors when amino acids comprising the transmembrane domains are compared and is clearly the third member of the 5-HT2 subfamily. The 5-HT2B receptor has been shown to couple to phosphoinositide hydrolysis as do the other two members of this subfamily when expressed in AV12-664 cells. Limited pharmacological analyses indicated that both rat and human 5-HT2B receptors are similar but distinguishable. With one tantalizing exception, the mRNAs for these receptors appear to be similarly distributed within rat and human. The 5-HT2B receptor mRNA is not found in rat brain, whereas in human brain it has been identified in multiple regions. This later finding suggests that the 5-HT2B receptor may be serving a unique CNS function in man that is absent in rat.  相似文献   

3.
A series of 2,3,3a,4-tetrahydro-1H-pyrrolo[3,4-c]isoquinolin-5(9bH)-ones is described, several examples of which exhibit potent 5-HT2C agonism with excellent selectivity over the closely related 5-HT2A and 5-HT2B receptors. Compounds such as 38 and 44 were shown to be effective in reducing food intake in an acute rat feeding model.  相似文献   

4.
Abstract: Serotonin (5-hydroxytryptamine; 5-HT) 5-HT2A and 5-HT2C receptors belong to the class of phosphoinositide-specific phospholipase C (PLC)-linked receptors. Conditions were established for measuring 5-HT2A-linked and 5-HT2C-linked PLC activity in membranes prepared from previously frozen rat frontal cortex and caudate. In the presence of Ca2+ (300 nM) and GTPγS (1 µM), 5-HT increased PLC activity in caudate membranes. Pharmacological analysis using the selective 5-HT2A antagonist, spiperone, and the nonselective 5-HT2A/2C antagonist, mianserin, demonstrated that over half of the 5-HT-stimulated PLC activity was due to stimulation of 5-HT2C receptors as opposed to 5-HT2A receptors. Radioligand binding assays with [3H]RP 62203 and [3H]-mesulergine were used to quantify 5-HT2A and 5-HT2C sites, respectively, in caudate. From these data, the Bmax for caudate 5-HT2A sites and 5-HT2C sites was 165.4 ± 9.7 fmol/mg of protein and 49.7 ± 3.3 fmol/mg of protein, respectively. In contrast to that in caudate, PLC activity in frontal cortex was stimulated by 5-HT in a manner that was inhibited by the 5-HT2A-selective antagonists, spiperone and ketanserin. Taken together, the results indicate that 5-HT2A- and 5-HT2C-linked PLC activity can be discerned in brain regions possessing both receptor subtypes using membranes prepared from previously frozen tissue. More importantly, significant 5-HT2C-mediated phosphoinositide hydrolysis was observed in caudate, despite the relatively low density of 5-HT2C sites. The significance of these observations with respect to the physiological function of 5-HT2C receptors is discussed.  相似文献   

5.
A series of novel aporphine derivatives were synthesized for initial screening at the 5-HT2 receptor subtypes. Among them, Compounds 11a and 11b were identified as potent 5-HT2C hit ligands with high selectivity over other 5-HT2 receptor subtypes. Molecular docking study revealed that compounds 11a and 11b formed two key interactions with the binding site of 5-HT2C receptor, including a salt-bridge to D3.32 and a H-bond interaction with N6.55.  相似文献   

6.
Abstract: Heterogeneity of the 5-hydroxytryptamine2 (5-HT2) receptor across species has been implicated in several pharmacological and physiological studies. Although 5-HT2 receptors in the rat have been linked to increases in Phosphoinositide (PI) hydrolysis, little evidence exists to support the association of guinea pig 5-HT2 receptors with Pl hydrolysis, the second messenger generally linked with 5-HT2receptors. In the present study, we have taken a molecular and biochemical approach to determining whether species differences in brain 5-HT2 receptors exist between rat and guinea pig. First, we isolated partial cortical 5-HTa receptor cDNA clones that encompassed the third intracellular loop, a receptor area putatively important in receptor-effector coupling. The amino acid sequences deduced from the cDNA clones for rat and guinea pig brain 5-HT2 receptor were 97% homologous. However, the guinea pig 5-HT2 receptor had two tandem substitutions that disrupted a potential alpha helix in the region of the third cytoplasmic loop, which theoretically could alter the intracellular coupling of the guinea pig cortical 5-HT2 receptor. Because of these molecular differences, we examined further the pharmacological activation of the brain 5-HT2 receptor from guinea pig. 5-HT and the 5-HT2 receptor agonist α-methyl-5-HT increased PI hydrolysis in guinea pig cortical slices whereas the 5-HT1c receptor agonist 5-methyltryptamine was significantly less potent. In addition, the 5-HT2 receptor antagonists LY53857, ketanserin, and spiperone blocked 5-HT-stimulated Pl hydrolysis. These pharmacological data suggested that activation of the 5-HT2 receptor in guinea pig cortical slices was associated with PI hydrolysis. Thus, although areas of the guinea pig brain 5-HT2 receptor that influence receptor-effector coupling were different from the rat, such differences were not critical to receptor-effector coupling because, as in the rat, guinea pig brain 5-HT2 receptors were also coupled to PI hydrolysis.  相似文献   

7.
A novel series of 5-HT2A ligands that contain a (phenylpiperazinyl-propyl)arylsulfonamides skeleton was synthesized. Thirty-seven N-(cycloalkylmethyl)-4-methoxy-N-(3-(4-arylpiperazin-1-yl)propyl)-arylsulfonamide and N-(4-(4-arylpiperazin-1-yl)butan-2-yl)-arylsulfonamide compounds were obtained. The binding of these compounds to the 5-HT2A, 5-HT2C, and 5-HT7 receptors was evaluated. Most of the compounds showed IC50 values of less than 100 nM and exhibited high selectivity for the 5-HT2A receptor. Among the synthesized compounds, 16a and 16d showed good affinity at 5-HT2A (IC50 = 0.7 nM and 0.5 nM) and good selectivity over 5-HT2C (50–100 times) and 5-HT7 (1500–3000 times).  相似文献   

8.
The serotonin (5-hydroxytryptamine; 5-HT)2C receptor is a G protein-coupled receptor (GPCR) exclusively expressed in CNS that has been implicated in numerous brain disorders, including anxio-depressive states. Like many GPCRs, 5-HT2C receptors physically interact with a variety of intracellular proteins in addition to G proteins. Here, we show that calmodulin (CaM) binds to a prototypic Ca2+-dependent “1-10” CaM-binding motif located in the proximal region of the 5-HT2C receptor C-terminus upon receptor activation by 5-HT. Mutation of this motif inhibited both β-arrestin recruitment by 5-HT2C receptor and receptor-operated extracellular signal-regulated kinase (ERK) 1,2 signaling in human embryonic kidney-293 cells, which was independent of G proteins and dependent on β-arrestins. A similar inhibition was observed in cells expressing a dominant-negative CaM or depleted of CaM by RNA interference. Expression of the CaM mutant also prevented receptor-mediated ERK1,2 phosphorylation in cultured cortical neurons and choroid plexus epithelial cells that endogenously express 5-HT2C receptors. Collectively, these findings demonstrate that physical interaction of CaM with recombinant and native 5-HT2C receptors is critical for G protein-independent, arrestin-dependent receptor signaling. This signaling pathway might be involved in neurogenesis induced by chronic treatment with 5-HT2C receptor agonists and their antidepressant-like activity.  相似文献   

9.
On the basis that meta-chlorophenylpiperazine (mCPP; 1) is a nonselective 5-HT2C agonist, that benz-fused tryptamines (e.g., 5) display enhanced 5-HT2 affinity, and that certain isotryptamines 3 reportedly bind with enhanced affinity and selectivity at 5-HT2C receptors, we prepared and examined a series of isotryptamine-related analogues as potentially selective 5-HT2C agonists. None of the compounds displayed selectivity for 5-HT2C versus 5-HT2A receptors. Detailed re-examination of a compound previously reported to display 100-fold 5-HT2C selectivity [i.e., S(+)-5,6-difluoro-α-methylisotryptamine] revealed that its selectivity versus 5-HT2A receptors was, at best, only 10-fold.  相似文献   

10.
Agonists of the 5-HT2C receptor have been shown to suppress appetite and reduce body weight in animal models as well as in humans. However, agonism of the related 5-HT2B receptor has been associated with valvular heart disease. Synthesis and biological evaluation of a series of novel and highly selective dihydroquinazolinone-derived 5-HT2C agonists with no detectable agonism of the 5-HT2B receptor is described. Among these, compounds (+)-2a and (+)-3c were identified as potent and highly selective agonists which exhibited weight loss in a rat model upon oral dosing.  相似文献   

11.
12.
Cognitive flexibility can be assessed in reversal learning tests, which are sensitive to modulation of 5-HT2C receptor (5-HT2CR) function. Successful performance in these tests depends on at least two dissociable cognitive mechanisms which may separately dissipate associations of previous positive and negative valence. The first is opposed by perseverance and the second by learned non-reward. The current experiments explored the effect of reducing function of the 5-HT2CR on the cognitive mechanisms underlying egocentric reversal learning in the mouse. Experiment 1 used the 5-HT2CR antagonist SB242084 (0.5 mg/kg) in a between-groups serial design and Experiment 2 used 5-HT2CR KO mice in a repeated measures design. Animals initially learned to discriminate between two egocentric turning directions, only one of which was food rewarded (denoted CS+, CS−), in a T- or Y-maze configuration. This was followed by three conditions; (1) Full reversal, where contingencies reversed; (2) Perseverance, where the previous CS+ became CS− and the previous CS− was replaced by a novel CS+; (3) Learned non-reward, where the previous CS− became CS+ and the previous CS+ was replaced by a novel CS-. SB242084 reduced perseverance, observed as a decrease in trials and incorrect responses to criterion, but increased learned non-reward, observed as an increase in trials to criterion. In contrast, 5-HT2CR KO mice showed increased perseverance. 5-HT2CR KO mice also showed retarded egocentric discrimination learning. Neither manipulation of 5-HT2CR function affected performance in the full reversal test. These results are unlikely to be accounted for by increased novelty attraction, as SB242084 failed to affect performance in an unrewarded novelty task. In conclusion, acute 5-HT2CR antagonism and constitutive loss of the 5-HT2CR have opposing effects on perseverance in egocentric reversal learning in mice. It is likely that this difference reflects the broader impact of 5HT2CR loss on the development and maintenance of cognitive function.  相似文献   

13.
1. The 5-HT2 receptors subdivision into the 5-HT2A/2B/2C subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation.2. The SB-200646 (a selective 5-HT2B/2C receptor antagonist) and LY215840 (a nonselective 5-HT2/7 receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP).3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose.4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine; while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs.5. It is suggested that 5-HT2B/2C receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time.6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreased cholinergic, glutamatergic, and/or serotonergic neurotransmission.  相似文献   

14.
A positive inotropic responsiveness to serotonin, mediated by 5-HT4 and 5-HT2A receptors, appears in the ventricle of rats with post-infarction congestive heart failure (HF) and pressure overload-induced hypertrophy. A hallmark of HF is a transition towards a foetal genotype which correlates with loss of cardiac functions. Thus, we wanted to investigate whether the foetal and neonatal cardiac ventricle displays serotonin responsiveness. Wistar rat hearts were collected day 3 and 1 before expected birth (days -3 and -1), as well as day 1, 3, 5 and 113 (age matched with Sham and HF) after birth. Hearts from post-infarction HF and sham-operated animals (Sham) were also collected. Heart tissue was examined for mRNA expression of 5-HT4, 5-HT2A and 5-HT2B serotonin receptors, 5-HT transporter, atrial natriuretic peptide (ANP) and myosin heavy chain (MHC)-α and MHC-β (real-time quantitative RT-PCR) as well as 5-HT-receptor-mediated increase in contractile function ex vivo (electrical field stimulation of ventricular strips from foetal and neonatal rats and left ventricular papillary muscle from adult rats in organ bath). Both 5-HT4 mRNA expression and functional responses were highest at day -3 and decreased gradually to day 5, with a further decrease to adult levels. In HF, receptor mRNA levels and functional responses reappeared, but to lower levels than in the foetal ventricle. The 5-HT2A and 5-HT2B receptor mRNA levels increased to a maximum immediately after birth, but of these, only the 5-HT2A receptor mediated a positive inotropic response. We suggest that the 5-HT4 receptor is a representative of a foetal cardiac gene program, functional in late foetal development and reactivated in heart failure.  相似文献   

15.
Abstract: Stable transfection of the human neuroblastoma cell line SH-SY5Y with the human 5-hydroxytryptamine2A (5-HT2A) or 5-HT2C receptor cDNA produced cell lines demonstrating ligand affinities that correlated closely with those for the corresponding endogenous receptors in human frontal cortex and choroid plexus, respectively. Stimulation of the recombinant receptors by 5-HT induced phosphoinositide hydrolysis with higher potency but lower efficacy at the 5-HT2C receptor (pEC50 = 7.80 ± 0.06) compared with the 5-HT2A receptor (pEC50 = 7.30 ± 0.08). Activation of the 5-HT2A receptor caused a transient fourfold increase in intracellular Ca2+ concentration. Whole-cell recordings of cells clamped at ?50 mV demonstrated a small inward current (2 pA) in response to 10 µM 5-HT for both receptors. There were no differences in potency or efficacy of phosphoinositide hydrolysis among four hallucinogenic [d-lysergic acid diethylamide (LSD), 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI), 5-methoxy-N,N-dimethyltryptamine, and mescaline] and three nonhallucinogenic drugs (m-chlorophenylpiperazine, quipazine, and ergotamine). Comparison of equipotent doses producing 20% of the maximal response induced by 5-HT revealed selective activation of the 5-HT2A receptor by LSD and to a lesser degree by DOI, mescaline, and ergotamine. Quipazine and 5-methoxy-N,N-dimethyltryptamine were relatively nonselective, whereas m-chlorophenylpiperazine selectively activated the 5-HT2C receptor. It is unlikely therefore that hallucinosis is mediated primarily by activity at the 5-HT2C receptor, whereas activity at the 5-HT2A receptor may represent an important but not unique mechanism associated with hallucinogenic drug action.  相似文献   

16.
Pharmacological approaches and optical recordings have shown that Schwann cells of a myelinating phenotype are activated by 5-HT upon its interaction with the 5-HT2A receptor (5-HT2AR). In order to further characterize the expression and distribution of this receptor in Schwann cells, we examined rat sciatic nerve and cultured rat Schwann cells using probes specific to 5-HT2AR protein mRNA. We also examined the endogenous sources of 5-HT in rat sciatic nerve by employing both histochemical stains and an antibody that specifically recognizes 5-HT. Rat Schwann cells of a myelinating phenotype contained both 5-HT2AR protein and mRNA. In the healthy adult rat sciatic nerve, 5-HT2ARs were evenly distributed along the outermost portion of the Schwann cell plasma membrane and within the cytoplasm. The most prominent source of 5-HT was within granules of the endoneurial mast cells, closely juxtaposed to Schwann cells within myelinating sciatic nerves. These results support the hypothesis that the 5-HT receptors expressed by rat Schwann cells in vivo are activated by the release of 5-HT from neighboring mast cells.  相似文献   

17.
The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 M down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2 receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-HT2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for all three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated.  相似文献   

18.
Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the “synergistic” melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows “biased signaling.” These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号