首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of flavonoid derivatives were designed, synthesized and evaluated as potential multifunctional AChE inhibitors against Alzheimer’s disease. Most of them exhibited potent AChE inhibitory activity, high selectivity for AChE over BuChE, and moderate to good inhibitory potency toward Aβ aggregation. Specifically, compound 12c was the strongest AChE inhibitor, being 20-fold more potent than galanthamine and twofold more potent than tacrine, and it also had ability to inhibit Aβ aggregation (close to the reference compound) and to function as a metal chelator. Molecular modeling and enzyme kinetic study revealed that it targeted both the catalytic active site and the peripheral anionic site of AChE. Consequently, this class of compounds deserved to be thoroughly and systematically studied for the treatment of Alzheimer’s disease.  相似文献   

2.
A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC50, 12.1?nM for eeAChE, 8.6?nM for hAChE, 2.6?μM for eqBuChE and 4.4?μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1–42) aggregation (64.7% at 20?μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer’s diseases.  相似文献   

3.
A series of novel phthalimide-alkylamine derivatives were synthesized and evaluated as multi-functions inhibitors for the treatment of Alzheimer’s disease (AD). The results showed that compound TM-9 could be regarded as a balanced multi-targets active molecule. It exhibited potent and balanced inhibitory activities against ChE and MAO-B (huAChE, huBuChE, and huMAO-B with IC50 values of 1.2 μM, 3.8 μM and 2.6?μM, respectively) with low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-9 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Interestingly, compound TM-9 abided by Lipinski’s rule of five. Furthermore, our investigation proved that TM-9 indicated weak cytotoxicity, and it could cross the blood-brain barrier (BBB) in vitro. The results suggest that compound TM-9, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer’s disease.  相似文献   

4.
Phosphodiesterase-9 (PDE9) is a promising target for treatment of Alzheimer’s disease (AD). To discover multifunctional anti-AD agents with capability of PDE9 inhibition and antioxidant activity, a series of novel pyrazolopyrimidinone derivatives, coupling with the pharmacophore of antioxidants such as ferulic and lipolic acids have been designed with the assistance of molecular docking and dynamics simulations. Twelve out of 14 synthesised compounds inhibited PDE9A with IC50 below 200?nM, and showed good antioxidant capacities in the ORAC assay. Compound 1h, the most promising multifunctional anti-AD agent, had IC50 of 56?nM against PDE9A and good antioxidant ability (ORAC (trolox)?=?3.3). The selectivity of 1h over other PDEs was acceptable. In addition, 1h showed no cytotoxicity to human neuroblastoma SH-SY5Y cells. The analysis on structure-activity relationship (SAR) and binding modes of the compounds may provide insight into further modification.  相似文献   

5.
Based on the quantitative structure-activity relationship (QSAR), some novel p-aminobenzoic acid derivatives as promising cholinesterase enzyme inhibitors were designed, synthesized, characterized and evaluated to enhance learning and memory. The in vitro enzyme kinetic study of the synthesized compounds revealed the type of inhibition on the respective acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vivo studies of the synthesized compounds exhibited significant reversal of cognitive deficits in the animal models of amnesia as compared to standard drug donepezil. Further, the ex vivo studies in the specific brain regions like the hippocampus, hypothalamus, and prefrontal cortex regions also exhibited AChE inhibition comparable to standard donepezil. The in silico molecular docking and dynamics simulations studies of the most potent compound 22 revealed the consensual interactions at the active site pocket of the AChE.  相似文献   

6.
A series of compounds following the lead compounds including deferasirox and tacrine were designed, synthesized and evaluated as multifunctional agents against Alzheimer’s disease (AD). In vitro studies showed that most synthesized compounds exhibited good multifunctional activities in inhibiting acetylcholinesterase (bAChE), and chelating metal ions. Especially, compound TDe demonstrated significant metal chelating property, a moderate acetylcholinesterase (AChE) inhibitory activity and an antioxidant activity. Results from the molecular modeling indicated that TD compounds were mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of TcAChE. Moreover, TDe showed a low cytotoxicity but a good protective activity against the injury caused by H2O2. These results suggest that TD compounds might be considered as attractive multi-target cholinesterase inhibitor and will play important roles in the treatment of AD.  相似文献   

7.
With the recent research advances in molecular biology and technology, multiple credible hypotheses about the progress of Alzheimer’s disease (AD) have been proposed; multi-target drugs have emerged as an innovative therapeutic approach for AD. Current clinical therapy for AD patients is mainly palliative treatment targeting acetylcholinesterase (AChE). Inhibition of phosphodiesterase 5A (PDE5A) has recently been validated as a potentially novel therapeutic approach for Alzheimer’s disease (AD). In this work, series of new compounds were designed, synthesized and evaluated as dual cholinesterase and PDE5A inhibitor. Biological results revealed that some of these compounds display good biological activities against AChE with IC50 values about 44.67–169.80 nM (donepezil IC50 50.12 nM). Notably, compound 12 presented potent activities against PDE5A with IC50 values about 50 μM (sildenafil IC50 12.59 μM), and some of these compounds showed low cell toxicity to A549 cells in vitro.  相似文献   

8.
A series of chalcone Mannich base derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer’s disease based on the multi-target directed ligands design strategy. In vitro assays demonstrated that most of the derivatives exerted potent selective inhibitory potency on AChE with good multifunctional properties. Among them, representative compound 7c exhibited moderate inhibitory potency for EeAChE (IC50 = 0.44 μM) and MAO-B inhibition (IC50 = 1.21 μM), good inhibitory effect on self-induced Aβ1−42 aggregation (55.0%, at 25 μM), biometal chelating property, moderate antioxidant activity with a value 1.93-fold of Trolox. Moreover, both kinetic analysis of AChE inhibition and molecular modeling study revealed that 7c showed a mixed-type inhibition, binding simultaneously to CAS and PAS of AChE. In addition, 7c also displayed high BBB permeability. These properties indicated 7c may be a promising multifunctional agent for the treatment of AD.  相似文献   

9.
A novel series of benzylisoquinoline derivatives were designed, synthesized, and evaluated as multifunctional agents against Alzheimer’s disease (AD). The screening results showed that most of the compounds significantly inhibited cholinesterases (ChEs), human cholinesterases (h-ChEs) and self-induced β-amyloid (Aβ) aggregation. In particular, compound 9k showed the strongest acetylcholinesterase (AChE) inhibitory activity, being 1000-fold and 3-fold more potent than its precursor benzylisoquinoline (10) and the positive control galanthamine, respectively. In addition, 9k was a moderately potent inhibitor for h-ChEs. Compared with precursor benzylisoquinoline (36.0% at 20 μМ), 9k (78.4% at 20 μМ) could further inhibit Aβ aggregation. Moreover, 9k showed low cell toxicity in human SH-SY5Y neuroblastoma cells. Therefore, compound 9k might be a promising lead compound for AD treatment.  相似文献   

10.
Multitarget molecular hybrids of N-benzyl pyrrolidine derivatives were designed, synthesized, and biologically evaluated for the treatment of Alzheimer’s disease (AD). Among the synthesized compounds, 4k and 4o showed balanced enzyme inhibitions against cholinesterases (AChE and BChE) and BACE-1. Both leads showed considerable PAS-AChE binding capability, excellent brain permeation, potential disassembly of Aβ aggregates, and neuroprotective activity against Aβ-induced stress. Compounds 4k and 4o also ameliorated cognitive dysfunction against the scopolamine-induced amnesia model in the Y-maze test. The ex vivo study signified attenuated brain AChE activity and antioxidant potential of compounds 4k and 4o. Furthermore, compound 4o also showed improvement in Aβ-induced cognitive dysfunction by the Morris water maze test with excellent oral absorption characteristics ascertained by the pharmacokinetic study. In silico molecular docking and dynamics simulation studies of leads suggested their consensual binding affinity toward PAS-AChE in addition to aspartate dyad of BACE-1.  相似文献   

11.
Combining N-benzylpiperidine moiety of donepezil and coumarin into in a single molecule, novel hybrids with ChE and MAO-B inhibitory activity were designed and synthesized. The biological screening results indicated that most of compounds displayed potent inhibitory activity for AChE and BuChE, and clearly selective inhibition to MAO-B. Of these compounds, 5m was the most potent inhibitor for eeAChE and eqBuChE (0.87 μM and 0.93 μM, respectively), and it was also a good and balanced inhibitor to hChEs and hMAO-B (1.37 μM for hAChE; 1.98 μM for hBuChE; 2.62 μM for hMAO-B). Molecular modeling and kinetic studies revealed that 5m was a mixed-type inhibitor, which bond simultaneously to CAS, PAS and mid-gorge site of AChE, and it was also a competitive inhibitor, which occupied the active site of MAO-B. In addition, 5m showed good ability to cross the BBB and had no toxicity on SH-SY5Y neuroblastoma cells. Collectively, all these results suggested that 5m might be a promising multi-target lead candidate worthy of further pursuit.  相似文献   

12.
A series of tacrine-(β-carboline) hybrids (11aq) were designed, synthesized and evaluated as multifunctional cholinesterase inhibitors against Alzheimer’s disease (AD). In vitro studies showed that most of them exhibited significant potency to inhibit acetylcholinesterase (eeAChE and hAChE), butyrylcholinesterase (BuChE) and self-induced β-amyloid (Aβ) aggregation, Cu2+-induced Aβ (1–42) aggregation, and to chelate metal ions. Especially, 11l presented the greatest ability to inhibit cholinesterase (IC50, 21.6 nM for eeAChE, 63.2 nM for hAChE and 39.8 nM for BuChE), good inhibition of Aβ aggregation (65.8% at 20 μM) and good antioxidant activity (1.57 trolox equivalents). Kinetic and molecular modeling studies indicated that 11l was a mixed-type inhibitor, binding simultaneously to the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. In addition, 11l could chelate metal ions, reduce PC12 cells death induced by oxidative stress and penetrate the blood–brain barrier (BBB). These results suggested that 11l might be an excellent multifunctional agent for AD treatment.  相似文献   

13.
A series of new coumarin-dithiocarbamate hybrids were designed and synthesized as multitarget agents for the treatment of Alzheimer’s disease. Most of them showed potent and clearly selective inhibition towards AChE and MAO-B. Among these compounds, compound 8f demonstrated the most potent inhibition to AChE with IC50 values of 0.0068 μM and 0.0089 μM for eeAChE and hAChE, respectively. Compound 8g was identified as the most potent inhibitor to hMAO-B, and it is also a good and balanced inhibitor to both hAChE and hMAO-B (0.114 µM for hAChE; 0.101 µM for hMAO-B). Kinetic and molecular modeling studies revealed that 8g was a dual binding site inhibitor for AChE and a competitive inhibitor for MAO-B. Further studies indicated that 8g could penetrate the BBB and exhibit no toxicity on SH-SY5Y neuroblastoma cells. More importantly, 8g did not display any acute toxicity in mice at doses up to 2500 mg/kg and could reverse the cognitive dysfunction of scopolamine-induced AD mice. Overall, these results highlighted 8g as a potential multitarget agent for AD treatment and offered a starting point for design of new multitarget AChE/MAO-B inhibitors based on dithiocarbamate scaffold.  相似文献   

14.
A series of 4′-OH-flurbiprofen-chalcone hybrids were designed, synthesized and evaluated as potential multifunctional agents for the treatment of Alzheimer’s disease. The biological screening results indicated that most of these hybrids exhibited good multifunctional activities. Among them, compounds 7k and 7m demonstrated the best inhibitory effects on self-induced Aβ1–42 aggregation (60.0% and 78.2%, respectively) and Cu2+-induced Aβ1–42 aggregation (52.4% and 95.0%, respectively). Moreover, these two representative compounds also exhibited good antioxidant activities, MAO inhibitions, biometal chelating abilities and anti-neuroinflammatory activities in vitro. Furthermore, compound 7m displayed appropriate blood-brain barrier permeability. These multifunctional properties highlight compound 7k and 7m as promising candidates for further development of multi-functional drugs against AD.  相似文献   

15.
A new series of coumarin thiazole derivatives 7a-7t were synthesized, characterized by 1H NMR, 13C NMR and element analysis, evaluated for their α-glucosidase inhibitory activity. The majority of the screened compounds displayed potent inhibitory activities with IC50 values in the range of 6.24 ± 0.07–81.69 ± 0.39 μM, when compared to the standard acarbose (IC50 = 43.26 ± 0.19 μM). Structure–activity relationship (SAR) studies suggest that the pattern of substitution in the phenyl ring is closely related to the biological activity of this class of compounds. Among all the tested molecules, compound 7e (IC50 = 6.24 ± 0.07 μM) was found to be the most active compound in the library of coumarin thiazole derivatives. Enzyme kinetic studies showed that compound 7e is a non-competitive inhibitor with a Ki of 6.86 μM. Furthermore, the binding interactions of compound 7e with the active site of α-glucosidase were confirmed through molecular docking. This study has identified a new class of potent α-glucosidase inhibitors for further investigation.  相似文献   

16.
A series of novel flurbiprofen-clioquinol hybrids were designed and synthesized as multifunctional agents for Alzheimer’s disease therapy, and their potential was evaluated through various biological experiments. In vitro studies showed that most target compounds exhibited significant ability to inhibit self- and Cu2+-induced β-amyloid aggregation. Furthermore, some target compounds, especially 7i and 7r, also showed biometal chelating abilities, antioxidant activity, anti-neuroinflammatory activity and appropriate BBB permeability. These biological activities indicated that the representative compound 7i and 7r might be promising multifunctional agents for AD treatment.  相似文献   

17.
β-Carboline family of compounds is a large group of alkaloids widely distributed in nature and exhibits broad-spectrum anti-tumor activities. We designed and synthesized two series of novel 1-carboxamide- and 6-sulfonamide-substituted β-carboline derivatives 7a-p and 12a-b, and their wild type B-Raf kinase inhibitory activities were described. Most compounds showed moderate to excellent inhibitory activities. Among them, 1-carboxamide-6-(N-(3-(dimethylamino)propyl)-sulfamoyl)-β-carboline, 7e exhibited potent activity (IC(50)=1.62 μM), showing the potential for further investigation as a lead compound.  相似文献   

18.
Abstract

In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5?l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10?nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK.  相似文献   

19.
Alzheimer’s disease (AD) is a multifactorial disorder with several target proteins contributing to its etiology. In search for multifunctional anti-AD drug candidates, taking into account that the acetylcholinesterase (AChE) and beta-amyloid (Aβ) aggregation are particularly important targets for inhibition, the tacrine and benzothiazole (BTA) moieties were conjugated with suitable linkers in a novel series of hybrids. The designed compounds (7a7e) were synthesized and in vitro as well as in ex vivo evaluated for their capacity for the inhibition of acetylcholinesterase (AChE) and Aβ self-induced aggregation, and also for the protection of neuronal cells death (SHSY-5Y cells, AD and MCI cybrids). All the tacrine–BTA hybrids displayed high in vitro activities, namely with IC50 values in the low micromolar to sub-micromolar concentration range towards the inhibition of AChE, and high percentages of inhibition of the self-induced Aβ aggregation. Among them, compound 7a, with the shortest linker, presented the best inhibitory activity of AChE (IC50 = 0.34 μM), while the highest activity as anti-Aβ42 self-aggregation, was evidenced for compound 7b (61.3%, at 50 μM. The docking studies demonstrated that all compounds are able to interact with both catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Our results show that compounds 7d and 7e improved cell viability in cells treated with Aβ42 peptide. Overall, these multi-targeted hybrid compounds appear as promising lead compounds for the treatment of Alzheimer’s disease.  相似文献   

20.
In search of potent acetyl cholinesterase inhibitors with low hepatotoxicity for the treatment of Alzheimer’s disease, introduction of a chloro substitution to tacrine and some of its analogs has proven to be beneficial in maintaining or potentiating the cholinesterase inhibitory activity. Furthermore, it was found to be able to reduce the hepatotoxicity of the synthesized compounds, which is the main target of the study. Accordingly, a series of new 4-(chlorophenyl)tetrahydroquinoline derivatives, was synthesized and characterized. The synthesized compounds were evaluated for their in vitro and in vivo anti-cholinesterase activity using tacrine as a reference standard. Furthermore, they were investigated for their hepatotoxicity compared to tacrine. The obtained biological results revealed that all synthesized compounds displayed equivalent or significantly higher anti-cholinesterase activity and lower hepatotoxicity in comparison to tacrine. In addition, in silico drug-likeness of the synthesized compounds were predicted and their practical logP were assessed indicating that all synthesized compounds can be considered as promising hits/leads. Furthermore, docking study of the compound showing the highest in vitro anticholinesterase activity was performed and its binding mode was compared to that of tacrine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号