共查询到9条相似文献,搜索用时 0 毫秒
1.
Degenerative retinal diseases affect millions of people worldwide, which can lead to the loss of vision. However, therapeutic approaches that can reverse this process are limited. Recent efforts have allowed the possibility of the stem cell-based regeneration of retinal cells and repair of injured retinal tissues. Although the direct differentiation of pluripotent stem cells into terminally differentiated photoreceptor cells comprises one approach, a series of studies revealed the intrinsic regenerative potential of the retina using endogenous retinal stem cells. Muller glial cells, ciliary pigment epithelial cells, and retinal pigment epithelial cells are candidates for such retinal stem cells that can differentiate into multiple types of retinal cells and be integrated into injured or developing retina. In this review, we explore our current understanding of the cellular identity of these candidate retinal stem cells and their therapeutic potential for cell therapy against degenerative retinal diseases. [BMB Reports 2015; 48(4): 193-199] 相似文献
2.
We have recently reported that RPE65 from the retinal pigment epithelium is the isomerohydrolase, a critical enzyme in the visual cycle for regeneration of 11-cis retinal, the chromophore for visual pigments. Here, we demonstrated that mutation of any one of the absolutely conserved four histidine and one glutamic acid residues to alanine in RPE65 abolished its isomerohydrolase activity. Substitution of the conserved glutamic acid with glutamine also resulted in loss of the activity. Moreover, these mutations significantly reduced protein stability of RPE65. These results indicate that these conserved residues are essential for the isomerohydrolase activity of RPE65 and its stability. 相似文献
3.
Hirofumi Uyama Michiko Mandai Masayo Takahashi 《Development, growth & differentiation》2021,63(1):59-71
Various advances have been made in the treatment of retinal diseases, including new treatment strategies and innovations in surgical devices. However, the treatment of degenerative retinal diseases, such as retinitis pigmentosa (RP) and age‐related macular degeneration (AMD), continues to pose a significant challenge. In this review, we focus on the use of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to treat retinal diseases by harnessing the ability of stem cells to differentiate into different body tissues. The retina is a tissue specialized for light sensing, and its degradation leads to vision loss. As part of the central nervous system, the retina has very low regenerative capability, and therefore, treatment options are limited once it degenerates. Nevertheless, innovations in methods to induce the generation of retinal cells and tissues from ESCs/iPSCs enable the development of novel approaches for these irreversible diseases. Here we review some historical background and current clinical trials involving the use of stem‐cell‐derived retinal pigment epithelial cells for AMD treatment and stem cell‐derived retinal cells/tissues for RP therapy. Finally, we discuss our future vision of regenerative treatment for retinal diseases with a partial focus on our studies and introduce other interesting approaches for restoring vision. 相似文献
4.
C(2)-Symmetric chiral diethoxyphosphoramide 4, diethoxythiophosphoramide 5, and diisopropoxyphosphoramide 6 of (1R, 2R)-1,2-diaminocyclohexane were prepared by the reactions of diethoxyphosphinic chloride, diethoxythiophosphinic chloride, and diisopropoxyphosphinic chloride with (1R, 2R)-1,2-diaminocyclohexane, respectively. They were used as catalytic chiral ligands in the asymmetric addition reactions of diethylzinc to aldehydes in the presence of titanium(IV) isopropoxide to give the corresponding sec-alcohols with 43-70% ee. Chiral ligands 4 and 5 gave the sec-alcohols with opposite absolute configuration. 相似文献
5.
Makoto Hamada Tetsuo Takayama Tsuyoshi Shibata Akira Hiratate Masato Takahashi Miyoko Yashiro Noriko Takayama Lisa Okumura-Kitajima Hiroko Koretsune Hiromitsu Kajiyama Takumi Naruse Sota Kato Hiroki Takano Hiroyuki Kakinuma 《Bioorganic & medicinal chemistry letters》2018,28(10):1725-1730
Prolyl hydroxylase domain-containing protein (PHD) inhibitors are useful as orally administered agents for the treatment of renal anemia. Based on the common structures of known PHD inhibitors, we found novel PHD inhibitor 1 with a 2-[(4-hydroxy-6-oxo-2,3-dihydro-1H-pyridine-5-carbonyl)amino]acetic acid motif. The PHD2-inhibitory activity, lipophilicity (CLogP), and PK profiles (hepatocyte metabolism, protein binding, and/or elimination half-life) of this inhibitor were used as the evaluation index to optimize the structure and eventually discovered clinical candidate 42 as the suitable compound. Compound 42 was demonstrated to promote the production of erythropoietin (EPO) following oral administration in mice and rats. The predicted half-life of this compound in humans was 1.3–5.6?h, therefore, this drug may be expected to administer once daily with few adverse effects caused by excessive EPO production. 相似文献
6.
Yehiel Zick Rachel Cesla Shmuel Shaltiel 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1983,762(2):355-365
Mouse thymocytes are characterized as a model cellular system for studying the onset of hormone-induced cellular refractoriness (desensitization). This system has the following combination of useful features. (a) The cells can be isolated without the use of digestive enzymes, avoiding possible damage to surface receptors or to other exposed membranal constituents. (b) They can be kept viable for several hours, a period during which both stimulation and desensitization get well under way. (c) They can be stimulated by a variety of hormones which function via cAMP (β-agonists, prostaglandin E1 and specific thymic humoral factors). (d) Their desensitization is receptor-specific. (e) They can be readily ruptured under mild conditions so as to allow a physiologically relevant biochemical analysis of hormonal stimulation and desensitization. (f) The hormonal response of these cells can be monitored simultaneously by the activation of adenylate cyclase, by the intracellular level of cAMP, and by the activation of cAMP-dependent protein kinase (which functions as a metabolic sensor for cAMP). In this cellular system, desensitization does not involve processes such as the efflux of cAMP, the activation of cAMP-phosphodiesterase or the synthesis of a protein mediator. On the other hand, desensitization can be accounted for by a hormone-triggered inactivation of the adenylate cyclase system. The immediate desensitization of thymocytes is reversible and occurs without apparent loss of functional receptors. Continuous presence of hormone is shown to be required not only for triggering the chain of events which leads to the readily reversible desensitization, but also for the process which transfers the cells to the subsequent, ‘locked’ desensitized state. 相似文献
7.
《Bioorganic & medicinal chemistry》2020,28(5):115307
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a key role in maintaining cellular metabolism. AMP or adenosine diphosphate (ADP) levels rise during metabolic stress, such as during nutrient starvation, hypoxia and muscle contraction, and bind to AMPK to induce activity. Recently, activation of AMPK has been considered an attractive therapeutic strategy in the field of human oncology. Structural optimization of lead compound 2, a new type of AMPK activator with potent AMPK activation activity and attractive selective growth inhibition against human cancer cells, improved aqueous solubility, metabolic stability and animal pharmacokinetics (PK) and culminated in the identification of (5-{1-[(6-methoxypyridin-3-yl)methyl]piperidin-4-yl}-1H-benzimidazol-2-yl)(4-{[4-(trifluoromethyl)phenyl]methyl}piperazin-1-yl)methanone ditosylate, ASP4132 (28). Studies on ASP4132 had advanced to clinical trials for the treatment of cancer. 相似文献
8.
Elizabeth A. McCormack 《Journal of molecular biology》2009,391(1):192-3090
The eukaryotic chaperonin-containing TCP-1 (CCT) folds the cytoskeletal protein actin. The folding mechanism of this 16-subunit, 1-MDa machine is poorly characterised due to the absence of quantitative in vitro assays. We identified phosducin-like protein 2, Plp2p (=PLP2), as an ATP-elutable binding partner of yeast CCT while establishing the CCT interactome. In a novel in vitro CCT-ACT1 folding assay that is functional under physiological conditions, PLP2 is a stimulatory co-factor. In a single ATP-driven cycle, PLP2-CCT-ACT1 complexes yield 30-fold more native actin than CCT-ACT1 complexes. PLP2 interacts directly with ACT1 through the C-terminus of its thioredoxin fold and the CCT-binding subdomain 4 of actin. The in vitro CCT-ACT1-PLP2 folding cycle of the preassembled complex takes 90 s at 30 °C, several times slower than the canonical chaperonin GroEL. The specific interactions between PLP2, CCT and ACT1 in the yeast-component in vitro system and the pronounced stimulatory effect of PLP2 on actin folding are consistent with in vivo genetic approaches demonstrating an essential and positive role for PLP2 in cellular processes involving actin in Saccharomyces cerevisiae. In mammalian systems, however, several members of the PLP family, including human PDCL3, the orthologue of PLP2, have been shown to be inhibitory toward CCT-mediated folding of actin in vivo and in vitro. Here, using a rabbit-reticulocyte-derived in vitro translation system, we found that inhibition of β-actin folding by PDCL3 can be relieved by exchanging its acidic C-terminal extension for that of PLP2. It seems that additional levels of regulatory control of CCT activity by this PLP have emerged in higher eukaryotes. 相似文献
9.
Hanna Helgeland Simen Rød Sandve Jacob Seilø Torgersen Mari Kyllesø Halle Hilde Sundvold Stig Omholt Dag Inge Våge 《Gene》2014
In mammals, two carotenoid cleaving oxygenases are known; beta-carotene 15,15′-monooxygenase (BCMO1) and beta-carotene 9′,10′-oxygenase (BCO2). BCMO1 is a key enzyme in vitamin A synthesis by symmetrically cleaving beta-carotene into 2 molecules of all-trans-retinal, while BCO2 is responsible for asymmetric cleavage of a broader range of carotenoids. Here, we show that the Atlantic salmon beta-carotene oxygenase (bco) gene family contains 5 members, three bco2 and two bcmo1 paralogs. Using public sequence databases, multiple bco genes were also found in several additional teleost species. Phylogenetic analysis indicates that bco2a and bco2b originate from the teleost fish specific genome duplication (FSGD or 3R), while the third and more distant paralog, bco2 like, might stem from a prior duplication event in the teleost lineage. The two bcmo1 paralogs (bcmo1 and bcmo1 like) appear to be the result of an ancient duplication event that took place before the divergence of ray-finned (Actinopterygii) and lobe-finned fish (Sarcopterygii), with subsequent nonfunctionalization and loss of one Sarcopterygii paralog. Gene expression analysis of the bcmo1 and bco2 paralogs in Atlantic salmon reveals regulatory divergence with tissue specific expression profiles, suggesting that the beta-carotene oxygenase subtypes have evolved functional divergences. We suggest that teleost fish have evolved and maintained an extended repertoire of beta-carotene oxygenases compared to the investigated Sarcopterygii species, and hypothesize that the main driver behind this functional divergence is the exposure to a diverse set of carotenoids in the aquatic environment. 相似文献