首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
《植物生态学报》2015,39(11):1093
AimsResponses of plants to increased irradiance are governed by two strategies: an increase in the utilization of absorbed light and photo-protective mechanisms. Varied physiological responses to increased irradiance were observed in plant species with differing adaptabilities to light regimes. This research aims to explore the physiological responses and photo-protective mechanisms of two Rhododendron plants to changes in light regimes. MethodsChlorophyll fluorescence parameters and rapid light curves were measured for leaves of R. hybrida (a shade-tolerant species) and R. simsii (a light-loving and shade-tolerant species) following exposure to sunlight for five days after growing in the shade for one year.Important findings Natural sunlight decreased the efficiency of photochemical reaction by reducing the fraction of incident light in photochemical energy utilization and decreased thermal dissipation through regulating energy dissipation in photosystem II (PSII) in the leaves of R. hybrida. As a result, natural sunlight induced the accumulation of excess excitation energy in PSII, and caused photo-inhibition and even photodamage in the leaves of R. hybrida, which was suddenly transferred from long-term shading to sun exposures. The acclimation capacity to changes of growth light regimes was stronger in R. simsii than in R. hybrida, due to a higher capability for photochemical reaction, thermal dissipation and cyclic electron flows around photosystem I in the leaves of R. simsii. Rhododendron simsii could utilize a high fraction of incident light in photochemistry and regulate energy dissipation in PSII to protect the photosynthetic apparatus under both shading and natural sunlight condition. Therefore, high light intensity under natural sunlight did not cause photo-inhibition in R. simsii.  相似文献   

2.
骆驼刺在不同遮阴下的水分状况变化及其生理响应   总被引:4,自引:0,他引:4       下载免费PDF全文
为了研究骆驼刺(Alhagi sparsifolia)在不同遮阴环境下的生理适应性, 以塔克拉玛干沙漠南缘策勒绿洲外围骆驼刺为试验材料, 设置正常光照、中度遮阴(70%自然光)、重度遮阴(30%自然光) 3种光照环境, 观测了遮阴90天后土壤含水率, 骆驼刺水势、气孔导度(Gs)、叶形态、叶绿素(Chl)含量、脯氨酸(Pro)含量、丙二醛(MDA)含量、可溶性糖含量等在不同遮阴条件下的变化特征。结果显示: 随着遮阴强度的增大, 土壤含水率, 骆驼刺水势、Gs、比叶面积、Chl含量、类胡萝卜素含量有一定程度的增加; 骆驼刺叶片厚度、Pro含量、MDA含量、可溶性糖含量以及Chl a/Chl b有不同幅度的减少。结果表明: 一段时间内适度的遮阴在一定程度上降温增湿, 能够改善骆驼刺的生境, 从而避免高温强光和低水势对植物造成的伤害, 促进植物的生长, 但长期遮阴对植物的生长不利。因此建议通过短期的遮阴, 特别是在温度较高、光照较强的夏季正午前后对骆驼刺进行遮阴处理, 以达到对骆驼刺的逆境防护, 促进骆驼刺的生长。  相似文献   

3.
王国莉  郭振飞 《广西植物》2005,25(4):375-379,361
综述了近年来有关植物低温光抑制和光保护机制的研究进展。与以往对光抑制的定义不同,现在认为光抑制既包括光对光合作用反应中心的损伤,也包括植物为避免光破坏而形成的生理生化保护机制。该文主要从三个方面展开论述:低温下光抑制发生的原因及光抑制的位点;低温光抑制时可能的光保护机制;低温光抑制下过剩光能的耗散机制。  相似文献   

4.
高温胁迫下五种杜鹃花属植物的生理变化及其耐热性比较   总被引:4,自引:0,他引:4  
高温是制约分布于较高海拔地区杜鹃花迁地保育与园林应用的重要因子.为探讨杜鹃花属植物的 高温致伤机理,该实验以隶属不同亚属的白花杜鹃、羊踯躅、毛棉杜鹃、红滩杜鹃及红棕杜鹃4年生实生苗为 材料,通过人工气候箱的盆栽实验,研究了30℃、38℃高温胁迫下其叶片生理生化指标的变化,并利用隶属 函数法及系统聚类分析法对其种间...  相似文献   

5.
两种热带雨林树苗对环境光强变化的生理响应和适应机制   总被引:2,自引:0,他引:2  
干季末雨季初以西双版纳热带雨林中木奶果和玉蕊2种树苗为材料,研究了将生长于12.5%自然光(相当于小林窗的光强)和36%自然光(相当于大林窗的光强)下的这2种树苗分别移至36%自然光和12.5%自然光下之后各自叶片最大净光合速率(Pmax)、叶绿素荧光参数、光合色素含量、比叶重(LMA)以及叶片悬挂角(MA)的变化过程,探讨了2种植物幼苗在生长环境光强改变后其形态和生理生态特性做出的相应调整以适应新的光环境的过程与机制。结果表明,这2种树苗均不适宜生长在大林窗的强光环境下,但木奶果对光环境的增强表现出一定的耐受力,光合适应潜力强于玉蕊,2种树苗对低光环境都能较好地适应;新叶的生成在整株植物对生长光环境变化的适应过程中也起到至关重要的作用。  相似文献   

6.
庄平   《广西植物》2012,32(2):150-156
依据植物分类学和地理学研究成果,尤其是从中国东部到西端喜玛拉雅杜鹃花类群分布及其现代与历史环境变化和规律,在已有的3个亚属级分布型的基础上,尝试建立了由7组和49亚组构成的11个杜鹃花属组与亚组级分布型体系。研究结果表明,该分布型体系展示了我国杜鹃花属植物类群在我国东部到西端的4个基本地理单元的分布面貌,尤其是展示了以杜鹃花亚属和常绿杜鹃亚属为主的不同大小、不同性质与不同进化程度的亚组级单位在上述分布体系中的位置与数量分布,从而揭示了我国东西向地形阶地由低到高和新生代以来生物地史由较稳定区到巨变区延展变化对杜鹃花属类群分布格局带来的巨大影响。指出,我国杜鹃花属植物的组与亚组级中的大类群、较广布群、原始群和常绿杜鹃类群的分布区或集中分布区偏向狭义横断山及其以东;反之,小类群、狭域与特有群、进化类群和有鳞类群的分布区或分布重心偏向(狭义)横断山及其以西。川西山地、狭义横断山、喜玛拉雅山既是杜鹃花属植物的集中分布区,也是某些类群扩散、迁移的地理屏障,对我国现代杜鹃花分布区及其分布格局的形成具有重要影响;东西向的地理环境变化是我国杜鹃花植物属下类群及其分布型变化的主轴。  相似文献   

7.
六种杜鹃花属植物花粉活力测定方法的比较研究   总被引:1,自引:0,他引:1  
选取睫毛杜鹃(Rhododendron ciliatum)、多鳞杜鹃(Rhododendron polylepis)、薄皮杜鹃(Rhdodenron taronense)、映山红(Rhododendron simsii)、马银花(Rhododendron ovatum)和比利时杜鹃(Rhododendron hybridum)为研究对象,通过蔗糖、H3BO3、CaCl2单因子及L25( 53)正交试验对它们进行花粉萌发试验研究,比较I2-Kl染色法、TTC染色法、联苯胺染色法、MTT染色法4种花粉活力测定方法的不同.结果表明:蔗糖、H3BO3、CaCl2及3因子交互效应对杜鹃花花粉萌发有显著影响.适宜的离体培养基配方依杜鹃花种类不同而不同,睫毛杜鹃为:蔗糖150 g/L +H3BO3 0 mg/L +CaCl2 50 mg/L;映山红为:蔗糖100 g/L +H3BO3 100 mg/L +CaCl20 mg/L;马银花为:蔗糖50 g/L+ H3BO3 200 mg/L +CaCl2 0 mg/L;比利时杜鹃为:蔗糖150 g/L+ H3BO3100 mg/L +CaCl2 0 mg/L.MTT染色法是简单快速测定杜鹃花花粉活力的最适染色法.  相似文献   

8.
冷敏感植物的低温光抑制及其生化保护机制   总被引:16,自引:3,他引:16  
阐述了冷敏感植物光抑制的发光机理、光与低温在光抑制中的关系及冷敏感植物在低温光抑制过程中的生理化变化,并结合冷锻炼对植物的影响,介绍了植物防制光破坏的生化机制。  相似文献   

9.
遮阴对两种泥炭藓植物生长及相互作用的影响   总被引:2,自引:1,他引:1  
以大泥炭藓和喙叶泥炭藓为材料,研究遮阴对其生长及植物相互作用的影响.结果表明:在单种群中,遮阴处理明显促进了大泥炭藓的高生长,但对喙叶泥炭藓的生长以及大泥炭藓生物量和分枝数未产生影响;在混合群中,喙叶泥炭藓抑制了大泥炭藓生物量和分枝数的增长,而大泥炭藓对喙叶泥炭藓的生长无影响.随遮阴胁迫的增加,邻体对喙叶泥炭藓竞争加剧,当胁迫进一步增强,邻体效应有转变为正相互作用的趋势,但邻体对大泥炭藓的效应始终为竞争,未随胁迫增加而变化.  相似文献   

10.
庄平  王飞  邵慧敏 《广西植物》2013,(6):791-797
通过青藏高原的川西地区与藏东南地区杜鹃花属植物类群及其数量、地理分布型与垂直分布格局的研究,借助比较生物学的研究方法,揭示这两个重要区域分布的杜鹃花属植物类群及其分布格局的异同。结果表明:青藏高原东部区域的川西地区杜鹃花属植物具有较原始类群多、较高分类等级多、大类群多并与我国东部和狭义横断山联系较广泛的区系特征,类群及其特有种的垂直分布重心较低; 而青藏高原南缘区域的藏东南地区具有较进化类群多、较低分类等级多、小类群多、特化强烈并主要与狭义横断山有较密切联系的区系特征,类群及其特有种的垂直分布重心较高,且两地间近缘类群垂直替代现象明显。有关特征和现象与白垩纪晚期杜鹃花属起源地的温润气候、第三纪渐新世前后高原漫长的渐进抬升和第四纪高原的迅速隆升及其多次冰川的进退等三个地质历史节点和事件具有密切关联并相互对应。从而揭示了在共同的生物地质历史背景下,我国杜鹃花属植物地理区系及其垂直分布特征由东至西的趋异化过程与性质,并据此提出了在幅员广阔的中国—喜玛拉雅这个现代杜鹃花属植物分布中心内,可勾勒出三块具有明显分异的核心分布区,即川西—滇东北区、滇西北—滇西区、藏东南—藏南区。  相似文献   

11.
遮荫棉花转入强光后光合作用的光抑制及其恢复   总被引:16,自引:0,他引:16  
研究了遮荫棉花(Gossypium hirsutum L.)突然由遮荫条件暴露在自然强光下时,叶绿素荧光发射、叶绿体色素组成、净光合速率(Pn)等在光照转移当天以及随后的适应过程中(光照转换后15d内)的变化。遮荫棉花突然转到强光下,叶片发生了严重的光合作用光抑制,叶绿素荧光参数Fv/Fm和φPSⅡ急剧降低,且明显低于自然光照下生长的叶片,而F。值却明显升高。这些参数即使在光照转换的次日清晨也不能完全恢复。Fv/Fm和Pn在光照转换以后的4d内持续降低,在第6天以后开始逐渐升高,在10-12d达到稳定值,表现出遮荫棉花叶片对光强变化的一定适应性,但Fv/Fm和Pn均未达到自然光照条件下生长的棉花叶片的相应值。最后的Pn值较遮荫下叶片增加60%,但同自然光照下生长的叶片相比只有后的40%。试验结果还表明,光照转换以后叶片内叶黄素循环库逐渐增大,在较短的时间内(3d)即可达到较高的水平。遮荫棉花突然转么自然强光下,叶片Fv/Fm及Pn的降低与PSⅡ反应中心的破坏有关,在对强光的适应过程中依赖叶黄素循环的热耗散等保护机制增强。光保护机制的逐渐完善有助于减轻叶片由遮荫转到强光下遭受的光破坏。  相似文献   

12.
Stomatal and photosynthetic responses to variable sunlight   总被引:11,自引:0,他引:11  
Most plants experience many fluctuations in sunlight from full sun to shade throughout the day. Under these conditions, stomatal and photosynthetic responses vary dramatically among species depending on water status and growth form. Many herbaceous, fast-growing species rapidly reduce stomatal opening during short-term shade periods. Rapid stomatal closure during shade conserves water, but may also reduce CO2 uptake. Because periods of alternating sun and shade can reduce accumulative water stress that would otherwise severely curtail carbon gain, some herbs are restricted to habitats with intermittent periods of shade. In contrast to herbaceous growth forms, woody species maintain relatively constant stomatal opening during both sun and shade periods. This results in greater CO2 uptake, but with greater water loss. These two generalized response patterns for woody and herbaceous species to natural variations in sunlight conflict with conventional ideas of water use and carbon gain based on measurements made under constant light.  相似文献   

13.
14.
Chlorophyll fluorescence emission, pigment composition and photosynthetic rate of shade-grown cotton (Gossypium hirsutum L.) plants were measured immediately after suddenly exposing to full sunlight and at regular intervals there after within 15 d. Photoinhibition occurred in shade-grown cotton leaves immediately after exposed to full sunlight. The chlorophyll fluorescence parameter Fv / Fm and ΦPSⅡ , which reflect the efficiency of PSⅡ, obviously decreased in shade-grown leaves, much lower than that of the full sunlight-grown leaves. On the contrary, Fo value was sharply increased. Neither of these parameters could completely recover till next morning. The photoinhibition was chronic and continued for about 4 d, while the Fv / Fm and the net photosynthetic rate ( Pn ) continued to decline, then began to increase gradually 6 d later and turned stable after 10-12 d, appearing as an acclimation phenomenon. However, the final value of Fv / Fm and Pn did not reach the level as in those leaves grown in the full sunlight ever before. The final Pn was higher by 60% than that before exposure, but lower for more than 40% than that of the full sunlight-grown leaves. The most notable response of chloroplast pigment composition was a pronounced increase in the pool size of carotenoids in xanthophyll cycle over a period of 3 d. The results indicated that when shade-grown cotton seedlings were suddenly transferred to the full sunlight, the decline of Fv / Fm and Pn might associate with the damage of the PSⅡ reaction center. During the light acclimation, photoprotective mechanisms such as the xanthophyll cycle-dependent energy dissipation were increased, so that photodamage in leaves transferred from low to high light might be reduced.  相似文献   

15.
Rhododendron (Ericaceae) is a large woody genus in which hybridization may play an important role in evolution and speciation, particularly in the Sino-Himalayan region, where many interfertile species often occur sympatrically. Natural hybridization between Rhododendron delavayi Franch. (=  R. arboreum ssp. delavayi ) and Rhododendron decorum Franch., which belong to different subsections of subgenus Hymenanthes, was investigated. Material of R. delavayi and R. decorum and their putative hybrids was collected from the wild. On the basis of morphology, chloroplast DNA, nuclear ribosomal DNA, and AFLP profiles, hybrids and parental species were identified. Hybridization occurred in both directions, but was asymmetrical, with R. delavayi as the major maternal parent in the hybrid zone. Most of the hybrids possessed intermediate phenotypes, and amongst the 15 hybrids detected were six F1s, two F2s, one first-generation backcross to R. delavayi , and two first-generation backcrosses to R. decorum . This indicates that, if Rhododendron underwent rapid radiation in this region, it did so in spite of permeable species barriers.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 119–129.  相似文献   

16.
Tests were conducted on the performance of UNS S31600 stainless steel (SS) in a natural day/night cycle vs full darkness under conditions of natural marine biofilm accumulation. In quiescent flowing seawater tests in the laboratory as well as under natural immersion in the sea, diffuse sunlight (~10% of natural) counteracted the influence of marine biofilms and produced substantial inhibition of the corrosion of SS. Thus, the probabilities (percentage attack) and propagation rates (depths of attack) in multiple crevice tests were substantially lower in the day/night cycle than in the dark. A benefit was also observed for welded SS in terms of the time to corrosion initiation and the mass loss. SS in the passive state showed broader passive regions, well-defined breakdown potentials and markedly smaller anodic and cathodic current densities under the diurnal cycle. The overall reduction in corrosion is attributed to a combination of electrochemical photoinhibition and simultaneous photoinactivation of microbially mediated metal redox reactions linked to cathodic kinetics. These data offer fresh insights into the behaviour of SS under practical seawater situations and the proposed potential use of illumination in the mitigation of biologically influenced consequences.  相似文献   

17.
18.
The first trifoliate of soybean was shaded when fully expanded, while the plant remained in high light; a situation representative for plants growing in a closed crop. Leaf mass and respiration rate per unit area declined sharply in the first few days upon shading and remained rather constant during the further 12 days of the shading treatment. Leaf nitrogen per unit area decreased gradually until the leaves were shed. Leaf senescence was enhanced by the shading treatment in contrast to control plants growing in low light. Shaded leaves on plants grown at low nutrient availability senesced earlier than shaded leaves on plants grown at high nutrient availability. The light saturated rate of photosynthesis decreased also gradually during the shading treatment, but somewhat faster than leaf N, whereas chlorophyll contents declined somewhat slower than leaf N.
Partitioning of N in the leaf over main photosynthetic functions was estimated from parameters derived from the response of photosynthesis to CO2. It appeared that the N exported from the leaf was more at the expense of compounds that make up photosynthetic capacity than of those involved in photon absorption, resulting in a change in partitioning of N within the photosynthetic apparatus. Photosynthetic nitrogen use efficiency increased during the shading treatment, which was for the largest part due to the decrease in leaf N content, to some extent to the decrease in respiration rate and only for a small part to change in partitioning of N within the photosynthetic apparatus.  相似文献   

19.
The significance of photosynthetic and transpiration rates for the perception by plants of light gradients in leaf canopies has been investigated with regard to nitrogen allocation and re-allocation. A gradient of photon flux density (PFD) over a plant's foliage was simulated by shading one leaf of a pair of primary leaves of bean ( Phaseolus vulgaris L. cv. Rentegever). Photosynthetic rate was manipulated independently of PFD and, to some extent, also of transpiration, by subjecting the leaf to different CO2 concentrations. Transpiration rate was changed independently of PFD and photosynthetic rate by subjecting the leaf to different vapour pressure differences (VPD). A reduced partial pressure of CO2 reduced specific leaf mass (SLM) as did a decreased PFD, but did not change leaf N per unit area (NLA) and light saturated rate of photosynthesis (Amax). A reduced VPD caused several effects consistent with the effect of PFD. It decreased NLA and Amax and increased the chlorophyll to N ratio in old and young leaves. Furthermore, it decreased the chlorophyll a to b ratio and inhibited leaf growth in young leaves. The transpiration stream is partitioned among the leaves of a plant according to their transpiration rates. The results suggest that relative rates of import of xylem sap into leaves of a plant play an important role in the perception of partial shading of a plant, a situation normally found in dense vegetations. The possible role of cytokinin influx into leaves as controlled by transpiration rate, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号