首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) dysfunction has been found to be an important factor in both the development and progression of diabetic complications due to its many roles in the vascular system. Multifunctional compounds with hypoglycemic and endothelial protective action will be promising agents for the treatment of diabetes and its complications. In this study, a series of novel NO-donating sitagliptin derivatives and relevant metabolites were synthesized and evaluated as potential multifunctional hypoglycemic agents. All of synthetic compounds shown remarkable inhibitory activity against dipeptidyl peptidase IV (DPP-IV) in vitro and demonstrated excellent hypoglycemic activities in diabetic mice, similar to the activity of sitagliptin, and compounds T1-T4 shown different extents of NO-releasing abilities and potent antioxidant abilities in vivo. By screening in DPP-4, compound T4 was recognized as a potent DPP-4 inhibitor with the IC50 value of 0.060?μM. Docking study revealed compound T4 has a favorable binding mode. Furthermore, compounds T1-T4 exhibited different extents of NO-releasing abilities and excellent anti-platelet aggregation in vitro. The overall results suggested that T4 could help to the amelioration of endothelial dysfunction by reducing blood glucose, lessening oxidative stress and raising NO levels as well as inhibiting platelet aggregation. Based on this research, compound T4 deserves further investigation as potential new multifunctional anti-diabetic agent with antioxidant, anti-platelet aggregation and endothelial protective properties.  相似文献   

2.
Both nitric oxide (NO) dysfunction and oxidative stress have been regarded as the important factors in the development and progression of diabetes and its complications. Multifunctional compounds with hypoglycemic, NO supplementation and anti-oxidation will be the promising agents for treatment of diabetes. In this study, six phenylfuroxan nitric oxide (NO) donor phenols were synthesized, which were designed via a combination approach with phenylfuroxan NO-donor and natural phenols. These novel synthetic compounds were screened in vitro for α-glucosidase inhibition, NO releasing, anti-oxidation, anti-glycation and anti-platelet aggregation activity as well as vasodilatation effects. The results exhibited that compound T5 displayed more excellent activity than other compounds. Moreover, T5 demonstrated significant hypoglycemic activity in diabetic mice and oral glucose tolerance test (OGTT) mice. T5 also showed NO releasing and anti-oxidation in diabetic mice. Based on these results, compound T5 deserves further study as potential new multifunctional anti-diabetic agent with antioxidant, NO releasing, anti-platelet aggregation and vasodilatation properties.  相似文献   

3.
Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with hyperlipidemia and hyperglycemia induced by obesity and diabetes. Findings indicate that obtusifolin has antioxidant properties. The aim of this study was to evaluate the possible protective effects of obtusifolin against oxidative damage in diabetic hyperlipidemia and hyperglycemia. In this study, the rats were divided into the following groups with eight animals in each: control, untreated diabetic, three obtusifolin (10, 30, and 90 mg/kg/day)-treated diabetic groups. Diabetes was induced by streptozotocin (STZ) in rats. STZ was injected intraperitoneally at a single dose of 60 mg/kg for diabetes induction. Obtusifolin (intraperitoneal injection) was administered 3 days after STZ administration; these injections were continued to the end of the study (4 weeks). At the end of the 4-week period, blood was drawn for biochemical assays. In order to determine the changes of cellular antioxidant defense systems, antioxidant enzymes including glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) activities were measured in serum. Moreover, we also measured serum nitric oxide (NO) and serum malondialdehyde (MDA) levels, markers of lipid peroxidation. STZ-induced diabetes caused an elevation (P < 0.001) of blood glucose, MDA, NO, total lipids, triglycerides and cholesterol, with reduction of GSH level and CAT and SOD activities. The results indicated that the significant elevation in the blood glucose, MDA, NO, total lipids, triglycerides and cholesterol; also the reduction of glutathione level and CAT and SOD activity were ameliorated in the obtusifolin-treated diabetic groups compared with the untreated groups, in a dose-dependent manner (P < 0.05, P < 0.01, P < 0.001). These results suggest that obtusifolin has antioxidant properties and improves chemically induced diabetes and its complications by modulation of oxidative stress.  相似文献   

4.
《Phytomedicine》2014,21(4):497-505
The study investigates the antioxidant, hepatoprotective and antiproliferative effects of novel icetexane diterpenoids (ice 14) isolated from hexane extract of stem bark of Premna tomentosa. A549, HT-29, MCF-7, MDA-MB-231, A431 cells were used to assess the antiproliferative activity by MTT assay. Cell death induced by apoptosis was determined by morphological assessment studies using acridine orange/ethidium bromide staining (dual staining), mitochondrial potential measurement by JC-1 staining, and cell cycle analysis by propidium iodide staining method by Muse cell analyser. Anti oxidant activity was investigated by in vitro assays such as DPPH, nitric oxide and superoxide scavenging activities. Hepatoprotective activity was determined in vitro with HepG2 cells and in vivo by tBHP induced hepatic damage mice model. Based on the in vitro cytotoxic assays and morphological assessment studies using fluorescence microscopic study (acridine orange and ethidium bromide double staining) and mitochondrial potential measurements, it was found that ice 2 and 3 possess good antiproliferative effect via mitochondrial mediated apoptosis in human lung and breast cancer cells. Results of in vitro antioxidant studies demonstrated that ice-4 has showed good antioxidant activity. The restoration of serum levels of SGOT, SGPT and ALKP, liver GSH status and reduction or inhibition of lipid peroxidation in liver of tBHP intoxicated mice after administration of ice-4 at dose of 250 mg/kg indicated its potential use for hepatoprotective activity.  相似文献   

5.
Nitric oxide (NO) appears to play an important role in the regulation of thrombosis and hemostasis by inhibiting platelet function. The discovery of NO generation by reduction of nitrite (NO2 ) and nitrate (NO3 ) in mammals has led to increased attention to these anions with respect to potential beneficial effects in cardiovascular diseases. We have previously shown that nitrite anions at 0.1 µM inhibit aggregation and activation of human platelet preparations in vitro in the presence of red blood cells and this effect was enhanced by deoxygenation, an effect likely due to NO generation. In the present study, we hypothesized that nitrite and nitrate derived from the diet could also alter platelet function upon their conversion to NO in vivo. To manipulate the levels of nitrite and nitrate in mouse blood, we used antibiotics, NOS inhibitors, low nitrite/nitrate (NOx) diets, endothelial NOS knock-out mice and also supplementation with high levels of nitrite or nitrate in the drinking water. We found that all of these perturbations affected nitrite and nitrate levels but that the lowest whole blood values were obtained by dietary restriction. Platelet aggregation and ATP release were measured in whole blood and the results show an inverse correlation between nitrite/nitrate levels and platelet activity in aggregation and ATP release. Furthermore, we demonstrated that nitrite-supplemented group has a prolonged bleeding time compared with control or low NOx diet group. These results show that diet restriction contributes greatly to blood nitrite and nitrate levels and that platelet reactivity can be significantly affected by these manipulations. Our study suggests that endogenous levels of nitrite and nitrate may be used as a biomarker for predicting platelet function and that dietary manipulation may affect thrombotic processes.  相似文献   

6.
IntroductionAMP-activated protein kinase (AMPK) is a drug target for treatment of metabolic and cardiovascular complications. Extracts of Gentianaceace plants exhibit anti-diabetic and anti-atherosclerotic effects, however, whether their phyto-constitutents activate AMPK remains to be determined.MethodsMolecular docking of Gentiana lutea constituents was performed with crystal structure of human α2β1γ1 trimeric AMPK (PDB ID: 4CFE). Binding of Amarogentin (AG) to α2 subunit was confirmed through isothermal titration calorimetry (ITC) and in vitro kinase assays were performed. L6 myotube, HUH7 and endothelial cell cultures were employed to validate in silico and in vitro observations. Lipid lowering and anti-atherosclerotic effects were confirmed in streptozotocin induced diabetic mice via biochemical measurements and through heamatoxylin and eosin, Masson's trichrome and Oil Red O staining.ResultsAG interacts with the α2 subunit of AMPK and activates the trimeric kinase with an EC50 value of 277 pM. In cell culture experiments, AG induced phosphorylation of AMPK as well as its downstream targets, acetyl-coA-carboxylase (ACC) and endothelial nitric oxide synthase (eNOS). Additionally, it enhanced glucose uptake in myotubes and blocked TNF-α induced endothelial inflammation. Oral supplementation of AG significantly attenuated diabetes-mediated neointimal thickening, and collagen and lipid deposition in the aorta. It also improved circulating levels of lipids and liver function in diabetic mice.ConclusionIn conclusion, AG exerts beneficial vasculo-metabolic effects by activating AMPK.General significanceAmarogentin, a naturally occurring secoiridoid glycoside, is a promising lead for design and synthesis of novel drugs for treatment and management of dyslipidemia and cardiovascular diseases.  相似文献   

7.
The work is focused on the design of drugs that prevent and treat diabetes and its complications. A novel class of stilbene derivatives were prepared by coupling NO donors of alkyl nitrate and were fully characterised by NMR and other techniques. These compounds were tested in vitro activity, including α-glucosidase inhibitory activity, aldose reductase (AR) inhibitory activity and advanced glycation end products (AGEs) formation inhibitory activity. A class of modified compounds could play a significant effect for treatment of diabetic complications. Target compounds 3e and 7c offered a potential drug design concept for the development of therapeutic or preventive agents for diabetes and its complications.  相似文献   

8.
Oximes are compounds generally used to reverse the acetylcholinesterase (AChE) inhibition caused by organophosphates (OPs). The aim of this study was to examine the capacity of the butane-2,3-dionethiosemicarbazone oxime to scavenge different forms of reactive species (RS) in vitro, as well as counteract their formation. The potential antioxidant and toxic activity of the oxime was assayed both in vitro and ex vivo. The obtained results indicate a significant hydrogen peroxide (H2O2), nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity at 0.275, 0.5 and 5 μM of oxime, respectively (p ≤ 0.05). The oxime exhibited a powerful inhibitory effect on dihydroxybenzoate formation (25 μM) (p ≤ 0.05) and also decreased deoxyribose degradation induced by Fe2+ and via Fenton reaction (0.44 and 0.66 mM, respectively) (p ≤ 0.05). The oxime showed a significant inhibitory effect on σ-phenantroline reaction with Fe2+ (0.4 mM) suggesting a possible interaction between the oxime and iron. A significant decrease in the basal and pro-oxidant-induced lipid peroxidation in brain, liver, and kidney of mice was observed both in vitro and ex vivo (p ≤ 0.05). In addition, in our ex vivo experiments the oxime did not depict any significant changes in thiol levels of liver, kidney and brain as well as did not modify the δ-aminolevulinate dehydratase (δ-ALA-D) activity in these tissues. Taken together our results indicate an in vitro and ex vivo antioxidant activity of the oxime possibly due to its scavenging activity toward different RS and a significant iron interaction.  相似文献   

9.
Hydrogen (H2) acts as a therapeutic antioxidant. However, there are few reports on H2 function in other capacities in diabetes mellitus (DM). Therefore, in this study, we investigated the role of H2 in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ)-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H2 promoted 2-[14C]-deoxy-d-glucose (2-DG) uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K), protein kinase C (PKC), and AMP-activated protein kinase (AMPK), although it did not stimulate the translocation of Glut2 in Hep G2 cells. H2 significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p.) and oral (p.o.) administration. However, long-term p.o. administration of H2 had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H2 exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.  相似文献   

10.
A low molecular weight sulfated polysaccharide (LMWF) was prepared from Laminaria japonica by mild acid hydrolysis. The antioxidant activity of LMWF in vitro was studied using three kinds of oxygen free radical systems. LMWF had effective scavenging abilities on superoxide radical, hydroxyl radical and hypochlorous acid directly in vitro. The hepatoprotective effect of LMWF was studied using two acute liver injury mice models induced by carbon tetrachloride (CCl4) and D-galactosamine (D-GalN). Addition of LMWF significantly lowered the content of serum malonaldehyde and markedly increased the activities of superoxide dismutase and glutathione peroxidase, compared with the model groups in both kinds of liver injury mice. Moreover, administration of LMWF significantly inhibited the elevation of glutamate pyruvate transaminase induced by CCl4 and D-GalN in mice. The results suggest that the antioxidant activity of LMWF plays an important role in its hepatoprotective effect in the liver injury mice induced by CCl4 and D-GalN.  相似文献   

11.
Orally administered nitrite exerts antihypertensive effects associated with increased gastric nitric oxide (NO) formation. While reducing agents facilitate NO formation from nitrite, no previous study has examined whether antioxidants with reducing properties improve the antihypertensive responses to orally administered nitrite. We hypothesized that TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) could enhance the hypotensive effects of nitrite in hypertensive rats by exerting antioxidant effects (and enhancing NO bioavailability) and by promoting gastric nitrite-derived NO generation. The hypotensive effects of intravenous and oral sodium nitrite were assessed in unanesthetized freely moving rats with L-NAME (Nω-nitro-L-arginine methyl ester; 100 mg/kg; po)-induced hypertension treated with TEMPOL (18 mg/kg; po) or vehicle. While TEMPOL exerted antioxidant effects in hypertensive rats, as revealed by lower plasma 8-isoprostane and vascular reactive oxygen species levels, this antioxidant did not affect the hypotensive responses to intravenous nitrite. Conversely, TEMPOL enhanced the dose-dependent hypotensive responses to orally administered nitrite, and this effect was associated with higher increases in plasma nitrite and lower increases in plasma nitrate concentrations. In vitro experiments using electrochemical and chemiluminescence NO detection under variable pH conditions showed that TEMPOL enhanced nitrite-derived NO formation, especially at low pH (2.0 to 4.0). TEMPOL signal evaluated by electron paramagnetic resonance decreased when nitrite was reduced to NO under acidic conditions. Consistent with these findings, increasing gastric pH with omeprazole (30 mg/kg; po) attenuated the hypotensive responses to nitrite and blunted the enhancement in plasma nitrite concentrations and hypotensive effects induced by TEMPOL. Nitrite-derived NO formation in vivo was confirmed by using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), which blunted the responses to oral nitrite. Our results showed that TEMPOL promotes nitrite reduction to NO in the stomach and enhanced plasma nitrite concentrations and the hypotensive effects of oral sodium nitrite through mechanisms critically dependent on gastric pH. Interestingly, the effects of TEMPOL on nitrite-mediated hypotension cannot be explained by increased NO formation in the stomach alone, but rather appear more directly related to increased plasma nitrite levels and reduced nitrate levels during TEMPOL treatment. This may relate to enhanced nitrite uptake or reduced nitrate formation from NO or nitrite.  相似文献   

12.
BackgroundDiabetic complications-coronary atherosclerosis is closely related to the increased reactive oxygen species (ROS) induced by hyperglycemia. ROS are reported to induce the abnormal proliferation of vascular smooth muscle cells (VSMCs) under high glucose conditions. Leaf and seed extracts from Moringa oleifera are found to exhibit antioxidant activity. However, few studies are evaluating the antioxidant activities of chemical compounds isolated from the M. oleifera especially in cardiovascular field.PurposeThe aim of this study is to explore the antioxidative effect during hyperglycemia of niazirin from M. oleifera.Study designA cell model was applied.MethodsAfter the taking the in vitro antioxidant experiment including ferric reducing antioxidant power (FRAP), 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Cell viability was carried out using high glucose-induced VSMCs model. ROS production was tested by 2′,7′-dichlorofluorescein diacetate (DCF-DA) assay. The protein kinase C zeta (PKCζ) and NADPH oxidase 4 (Nox 4) expression in vitro and in vivo were measured by western blot analysis.ResultsNiazirin showed good free radical scavenging activity. Niazirin significantly attenuated the proliferation of high glucose-induced VSMCs. Furthermore, it could decrease the ROS and malondialdehyde (MDA) productions, while increased total antioxidant capacity (T-AOC), superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) levels in high glucose-induced VSMCs and streptozotocin-induced mice. In addition, niazirin could eliminate the high glucose-induced PKCζ activation, indicated by Thr410 phosphorylation and inhibition of the Nox4 protein expression in vitro and in vivo.ConclusionNiazirin from M. oleifera exhibited notably antioxidant activities and could be utilized as a potential natural antioxidant in preventing diabetic atherosclerosis.  相似文献   

13.
The antioxidant activities of crude Hyriopsis cumingii polysaccharides (HCPS) were evaluated both in vitro and in vivo. In vitro antioxidant assay, HCPS (crude and its purified fraction) could scavenge hydrogen peroxide, free radicals of superoxide anion and 2,2-diphenyl-1-picryl-hydrazyl, chelate ferrous ion and reduce ferric ion. Except for metal ion chelating activity, HCPS-3 exhibited much higher antioxidant activities than crude HCPS, HCPS-1 and HCPS-2. For antioxidant testing in vivo, different doses of crude HCPS were orally administrated over a period of 15 days in a d-galactose induced aged mice model. As results, administration of crude HCPS inhibited significantly the formation of malondialdehyde in mice livers and serums and raised the activities of antioxidant enzymes and total antioxidant capacity in a dose-dependent manner. The results suggested that HCPS had direct and potent antioxidant activities.  相似文献   

14.
BackgroundHedansanqi Tiaozhi Tang extract (HTT) consists of Notoginseng, Danshen, Hawthorn and Lotus leaf from traditional Chinese medicine, which has significant therapeutic effects on hyperlipidemia in patients with non-alcoholic fatty liver disease (NAFLD).PurposeThis study sought to evaluate the pharmacological effects and molecular mechanism of HTT for the treatment of hyperlipidemia in adipocytes and animal model with NAFLD.MethodsQuantitative phytochemical analysis of HTT was performed by HPLC. Antioxidant activity and the adipogenesis in 3T3-L1 cells were assessed. In the rat model induced by high-fat diet, lipid-related and antioxidant markers in serum and liver were detected. Moreover, the organ weights, non-alcoholic steatohepatitis (NASH) score and the levels of Nrf2 and HO-1 in liver sections were analyzed by tissue pathological techniques.Results8 constituents were identified in HTT including saponins, flavonoids, alkaloids and others. HTT treatment enhanced antioxidant activities and promoted lipolysis in 3T3-L1 adipocytes. We also found that HTT inhibited weight gain, reduced the lipid profiles and improved the liver function and pathological characteristics induced by high-fat diet. In addition, HTT activated the Nrf2/HO-1 antioxidant pathway in the liver.ConclusionHTT has protective effect against NAFLD in vitro and in vivo by activating the Nrf2/HO-1 antioxidant pathway.  相似文献   

15.
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.  相似文献   

16.
Separate and combined effects of nitrate (NaNO3) and L-arginine as potential sources of nitric oxide (NO) on the content of endogenous NO in roots of wheat (Triticum aestivum L.) seedlings and on their heat resistance were studied. Both agents increased the seedling resistance to the damaging heating; the effect was maximal at 20 mM NaNO3 or 5 mM L-arginine. The treatment with L-arginine elevated the NO content in the roots within the first 2 h of the treatment. Nitrate caused a stronger and longer rise in nitric oxide. Activity of nitrate reductase considerably (2–3 times) increased in the roots exposed to nitrate. The augmentation in the nitric oxide level caused by nitrate or L-arginine was prevented by the root pretreatment with an inhibitor of nitrate reductase (sodium tungstate) or an inhibitor of animal NO-synthase—NG-nitro-L-arginine methyl ester (L-NAME). Upon the combined treatment with NaNO3 and L-arginine, the nitrateinduced stimulation of the nitrate reductase activity, NO level in the roots, and seedling heat resistance were less pronounced than after separate application. In the presence of L-NAME, the negative influence of L-arginine on nitrate effects was markedly attenuated. The plant exposure to nitrate or L-arginine increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). A mixture of NaNO3, and L-arginine caused weaker effects. It was suggested that nitrate-dependent and arginine-dependent pathways of NO formation are antagonistic to each other in wheat roots.  相似文献   

17.
Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD.  相似文献   

18.
Some thiazolyl hydrazones were synthesized by one pot reaction of thiophene-2-carbaldehyde or 2, 4-dichlorobenzaldehyde, thiosemicarbazide and various phenacyl bromides which were preliminarily screened for in vitro antioxidant and antifungal activities. Excellent DPPH and H2O2 radical scavenged antioxidant activities were observed with almost all the tested compounds. Compounds 4a, 4b, 4c, 4e, 4f and 4i showed comparable DPPH scavenged antioxidant potential (90.26–96.56%) whereas H2O2 scavenged antioxidant activity (90.98–92.08%) was noticeable in case of 4a and 4f; showing significant antioxidant potential comparable with the standard ascorbic acid (95.3%). In vitro antifungal activity of synthesized compounds against fungal species Candida albicance, Aspergillus niger and Aspergillus flavus was found to be moderate to good as compared with the standard fluconazole and MIC values were found in the range of 3.12–25 μg/mL. Molecular docking studies revealed that the compounds 4a, 4b and 4c have a potential to become lead molecules in drug discovery process. In silico ADMET study was also performed for predicting pharmacokinetic and toxicity profile of the synthesized antioxidants which expressed good oral drug like behaviour and non-toxic nature.  相似文献   

19.

Objectives

Hypertensive heart disease is a constellation of abnormalities that includes cardiac fibrosis in response to elevated blood pressure, systolic and diastolic dysfunction. The present study was undertaken to examine the effect of sinapic acid on high blood pressure and cardiovascular remodeling.

Methods

An experimental hypertensive animal model was induced by L-NAME intake on rats. Sinapic acid (SA) was orally administered at a dose of 10, 20 and 40 mg/kg body weight (b.w.). Blood pressure was measured by tail cuff plethysmography system. Cardiac and vascular function was evaluated by Langendorff isolated heart system and organ bath studies, respectively. Fibrotic remodeling of heart and aorta was assessed by histopathologic analyses. Oxidative stress was measured by biochemical assays. mRNA and protein expressions were assessed by RT-qPCR and western blot, respectively. In order to confirm the protective role of SA on endothelial cells through its antioxidant property, we have utilized the in vitro model of H2O2-induced oxidative stress in EA.hy926 endothelial cells.

Results

Rats with hypertension showed elevated blood pressure, declined myocardial performance associated with myocardial hypertrophy and fibrosis, diminished vascular response, nitric oxide (NO) metabolites level, elevated markers of oxidative stress (TBARS, LOOH), ACE activity, depleted antioxidant system (SOD, CAT, GPx, reduced GSH), aberrant expression of TGF-β, β-MHC, eNOS mRNAs and eNOS protein. Remarkably, SA attenuated high blood pressure, myocardial, vascular dysfunction, cardiac fibrosis, oxidative stress and ACE activity. Level of NO metabolites, antioxidant system, and altered gene expression were also repaired by SA treatment. Results of in vitro study showed that, SA protects endothelial cells from oxidative stress and enhance the production of NO in a concentration dependent manner.

Conclusions

Taken together, these results suggest that SA may have beneficial role in the treatment of hypertensive heart disease by attenuating fibrosis and oxidative stress through its antioxidant potential.  相似文献   

20.
Zhang Y  Li C  Sun X  Kuang X  Ruan X 《PloS one》2012,7(2):e31631
Inhibition of p-glycoprotein under hyperglycemic conditions has been reported in various barrier tissues including blood-brain barrier, intestine, and kidney, and has been linked to significant clinical complications. However, whether this is also true for the outer blood-retinal barrier constituted by retinal pigment epithelium, or has a role in pathogenesis of diabetic retinopathy is not yet clear. In this study, using cultured human retinal pigment epithelium cell line D407, we found that high glucose exposure induced a significant decrease in p-glycoprotein expression both at mRNA and at protein levels, accompanied by an attenuated p-glycoprotein activity determined by intracellular rhodamine 123 retention. In marked contrast, the expressions of both mRNA and protein levels of inducible nitrate oxide synthase (iNOS) increased, and were accompanied by increased extracellular nitrate/nitrite production by Griess reaction. In addition, mRNA levels of nuclear receptors revealed a decreased expression of pregnane X receptor after the exposure of high glucose. However, the subsequent alterations in production of nitrate/nitrite, functional expression of p-glycoprotein, and mRNA levels of pregnane X receptor were partially blocked when pretreated with S,S′-1,3-phenylene-bis(1,2-ethanediyl)-bis-isothiourea•2HBr (PBITU), a selective iNOS inhibitor. Moreover, the effects of PBITU were antagonized with the addition of L-arginine, a substrate for NO synthesis. Our in vitro results suggest for the first time that iNOS induction plays a novel role in decreased p-glycoprotein expression and transport function at the human outer blood-retinal barrier under hyperglycemic conditions and further support the concept of inhibiting iNOS pathway as a therapeutic strategy for diabetic retinopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号