首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ray tracing is an elegant and powerful technique for creating computer-generated images. The wide variety of geometric primitives and realistic effects, such as reflections, transparency, and shadows, make it one of the most popular rendering methods in use today. We present a brief introduction to ray tracing and discuss some of the computational issues involved. Examples illustrate ray tracing 's effectiveness for producing high-quality visualizations of molecular structures.  相似文献   

2.
《Science activities》2012,49(2):33-41
Abstract

This article introduces a science game which can be used for innovative teaching and as an assessment tool. The Shadow Races Game is designed for first and second grade students to learn the phenomenon of shadow through inquiry-based activities and questions that require the children to apply inferences from those activities. In this amusing board game, students will discover the relationship between light, objects and shadows using familiar objects.  相似文献   

3.
An algorithm for accurate rendering of space-filling molecular models with shadows is presented. The intensity of light and cast shadows are computed to generate realistic pictures. Arbitrary numbers of light sources, which may be at infinite or finite distances can be applied. Hidden-surface removal, lighting, and shadowing are presented in detail.  相似文献   

4.
Antigen retrieval techniques: current perspectives.   总被引:8,自引:0,他引:8  
Development of the antigen retrieval (AR) technique, a simple method of boiling archival paraffin-embedded tissue sections in water to enhance the signal of immunohistochemistry (IHC), was the fruit of pioneering efforts guided by the philosophy of rendering IHC applicable to routine formalin-fixed, paraffin-embedded tissues for wide application of IHC in research and clinical pathology. On the basis of thousands of articles and many reviews, a book has recently been published that summarizes basic principles for practice and further development of the AR technique. Major topics with respect to several critical issues, such as the definition, application, technical principles, and further studies of the AR technique, are highlighted in this article. In particular, a further application of the heat-induced retrieval approach for sufficient extraction of nucleic acids in addition to proteins, and standardization of routine IHC based on the AR technique in terms of a test battery approach, are also addressed. Furthermore, understanding the mechanism of the AR technique may shed light on facilitating the development of molecular morphology.  相似文献   

5.
Chem-Ray, new molecular graphics program, utilizes a combination of standard algorithms developed for molecular systems as well as various ray casting techniques to produce highly realistic images on inexpensive raster terminals. The program produces images of space-filling, ball and stick or stick models derived from a user-supplied co-ordinate list. The most notable new feature of Chem-Ray is a simple, yet effective, algorithm for the improved treatment of shadows within a molecule. This new algorithm is based upon a calculation of a light pyramid at each point under examination. Intersections of various objects with this light pyramid will decrease the percentage of the light that can reach the point. If the entire cross-section is blocked, the point will be in the umbra of the shadow; if only a portion of the light is blocked, the point will be in the penumbra of the shadow.  相似文献   

6.
Desert ants, foraging in cluttered semiarid environments, are thought to be visually guided along individual, habitual routes. While other navigational mechanisms (e.g. path integration) are well studied, the question of how ants extract reliable visual features from a complex visual scene is still largely open. This paper explores the assumption that the upper outline of ground objects formed against the sky, i.e. the skyline, provides sufficient information for visual navigation. We constructed a virtual model of the ant’s environment. In the virtual environment, panoramic images were recorded and adapted to the resolution of the desert ant’s complex eye. From these images either a skyline code or a pixel-based intensity code were extracted. Further, two homing algorithms were implemented, a modified version of the average landmark vector (ALV) model (Lambrinos et al. Robot Auton Syst 30:39–64, 2000) and a gradient ascent method. Results show less spatial aliasing for skyline coding and best homing performance for ALV homing based on skyline codes. This supports the assumption of skyline coding in visual homing of desert ants and allows novel approaches to technical outdoor navigation.  相似文献   

7.
Insect attraction to host plants may be partly mediated by visual stimuli. In the present study, the responses of adult Hycleus apicicornis (Guér.) (Coleoptera: Meloidae) to plant models of different colours, different combinations of two colours, or three hues of blue of different shapes are compared. Single‐colour models comprised the colours sky blue, bright green, yellow, red, white and black. Sky blue (reflecting light in the 440–500 nm region) is the most attractive, followed by white, which reflects light over a broader range (400–700 nm). On landing on sky blue targets, beetles exhibit feeding behaviour immediately. When different hues of blue (of different shapes) are compared, sky blue is preferred over turquoise, followed by dark blue, indicating that H. apicicornis is more attracted to lighter hues of blue than to darker ones. No significant differences are found between the three shapes (circle, square and triangle) tested, suggesting that reflectance associated with colour could be a more important visual cue than shape for host location by H. apicicornis. The preference of H. apicicornis for sky blue can be exploited in designing an attractive trap for its management.  相似文献   

8.
Purpose:To demonstrate a capsulorhexis technique using predominantly shearing forces with a cystotome on a virtual reality simulator and on a human eye.Method:Our technique involves creating the initial anterior capsular tear with a cystotome to raise a flap. The flap left unfolded on the lens surface. The cystotome tip is tilted horizontally and is engaged on the flap near the leading edge of the tear. The cystotome is moved in a circular fashion to direct the vector forces. The loose flap is constantly swept towards the centre so that it does not obscure the view on the tearing edge.Results:Our technique has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. The capsulorhexis flap is moved away from the tear leading edge allowing better visualisation of the direction of tear. This technique offers superior control of the capsulorhexis by allowing the surgeon to change the direction of the tear to achieve the desired capsulorhexis size.Conclusions:The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis techniques. The shearing forces technique is a suitable alternative and in some cases a far better technique in achieving the desired capsulorhexis.  相似文献   

9.
The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.  相似文献   

10.
T Kroes  FH Post  CP Botha 《PloS one》2012,7(7):e38586
The field of volume visualization has undergone rapid development during the past years, both due to advances in suitable computing hardware and due to the increasing availability of large volume datasets. Recent work has focused on increasing the visual realism in Direct Volume Rendering (DVR) by integrating a number of visually plausible but often effect-specific rendering techniques, for instance modeling of light occlusion and depth of field. Besides yielding more attractive renderings, especially the more realistic lighting has a positive effect on perceptual tasks. Although these new rendering techniques yield impressive results, they exhibit limitations in terms of their exibility and their performance. Monte Carlo ray tracing (MCRT), coupled with physically based light transport, is the de-facto standard for synthesizing highly realistic images in the graphics domain, although usually not from volumetric data. Due to the stochastic sampling of MCRT algorithms, numerous effects can be achieved in a relatively straight-forward fashion. For this reason, we have developed a practical framework that applies MCRT techniques also to direct volume rendering (DVR). With this work, we demonstrate that a host of realistic effects, including physically based lighting, can be simulated in a generic and flexible fashion, leading to interactive DVR with improved realism. In the hope that this improved approach to DVR will see more use in practice, we have made available our framework under a permissive open source license.  相似文献   

11.
The real-time texture mapping capabilities of modern graphics workstations are explored with respect to their applications in a variety of relevant scenarios in interactive molecular modeling techniques. The common usage of texture mapping to reduce geometric complexity while enhancing realism is extended, opening new ways to visualize large amounts of molecular data in a comprehensive fashion. Thus, texture mapping may be employed to (1) display and filter multichannel information of structural properties on molecular surfaces, (2) improve the quality and accuracy of highly complex isodensity contours, (3) increase the rendering speed of space-filling atomic representations by two orders of magnitude and (4) apply volume-rendering techniques to large, three-dimensional density distributions in real time. Implementation of these novel techniques requires only moderate modifications or extensions to existing molecular modeling applications.  相似文献   

12.
Microalgae could become an important renewable source for chemicals, food, and energy if process costs can be reduced. In the past 60 years, relevant factors in open outdoor mass cultivation of microalgae were identified and elaborate solutions regarding bioprocesses and bioreactors were developed. An overview of these solutions is presented. Since the cost of most microalgal products from current mass cultivation systems is still prohibitively high, further development is required. The application of complex computational techniques for cost-effective process and reactor development will become more important if experimental validation of simulation results can easily be achieved. Due to difficulties inherent to outdoor experimentation, it can be useful to conduct validation experiments indoors. Considerations and approaches for realistic indoor reproduction of the most important environmental conditions in microalgae cultivation experiments—light, temperature, and substance concentrations, are discussed.  相似文献   

13.
Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats’ calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size.  相似文献   

14.
The surface area of corals represents a major reference parameter for the standardization of flux rates, for coral growth investigations, and for investigations of coral metabolism. The methods currently used to determine the surface area of corals are rather approximate approaches lacking accuracy, or are invasive and often destructive methods that are inapplicable for experiments involving living corals. This study introduces a novel precise and non-destructive technique to quantify surface area in living coral colonies by applying computed tomography (CT) and subsequent 3D reconstruction. Living coral colonies of different taxa were scanned by conventional medical CT either in air or in sea water. Resulting data volumes were processed by 3D modeling software providing realistic 3D coral skeleton surface reconstructions, thus enabling surface area measurements. Comparisons of CT datasets obtained from calibration bodies and coral colonies proved the accuracy of the surface area determination. Surface area quantifications derived from two different surface rendering techniques applied for scanning living coral colonies showed congruent results (mean deviation ranging from 1.32 to 2.03%). The validity of surface area measurement was verified by repeated measurements of the same coral colonies by three test persons. No significant differences between all test persons in all coral genera and in both surface rendering techniques were found (independent sample t-test: all n.s.). Data analysis of a single coral colony required approximately 15 to 30 min for a trained user using the isosurface technique regardless of the complexity and growth form of the latter, rendering the method presented in this study as a time-saving and accurate method to quantify surface areas in both living coral colonies and bare coral skeletons. Communicated by Biology Editor Dr Michael Lesser  相似文献   

15.
Humans like some colours and dislike others, but which particular colours and why remains to be understood. Empirical studies on colour preferences generally targeted most preferred colours, but rarely least preferred (disliked) colours. In addition, findings are often based on general colour preferences leaving open the question whether results generalise to specific objects. Here, 88 participants selected the colours they preferred most and least for three context conditions (general, interior walls, t-shirt) using a high-precision colour picker. Participants also indicated whether they associated their colour choice to a valenced object or concept. The chosen colours varied widely between individuals and contexts and so did the reasons for their choices. Consistent patterns also emerged, as most preferred colours in general were more chromatic, while for walls they were lighter and for t-shirts they were darker and less chromatic compared to least preferred colours. This meant that general colour preferences could not explain object specific colour preferences. Measures of the selection process further revealed that, compared to most preferred colours, least preferred colours were chosen more quickly and were less often linked to valenced objects or concepts. The high intra- and inter-individual variability in this and previous reports furthers our understanding that colour preferences are determined by subjective experiences and that most and least preferred colours are not processed equally.  相似文献   

16.
实时荧光定量PCR及其在微生物生态学中的应用   总被引:15,自引:0,他引:15  
张晶  张惠文  张成刚 《生态学报》2005,25(6):1445-1450
定量描述微生物群落的组成,在微生物生态学的许多研究领域都是非常重要的。然而由于可培养技术的局限性,定量描述微生物群落成为比较困难的事情。最近包括PCR技术在内的分子生物学技术为人们提供了有力的工具,使对微生物群落的分布、丰度等有了进一步的了解。实时荧光定量PCR技术作为核酸定量检测技术,自从发明以来在微生物生态学研究中逐渐得到了广泛的应用。从微生物生态学角度,综述了实时荧光定量PCR技术的原理、发展、优缺点及其在微生物生态学研究中的应用与研究进展,并探讨了实时荧光定量PCR技术的发展和应用前景。  相似文献   

17.
This paper examines a new technique for the visualization of and the interaction with trees, objects frequently used to convey hierarchical relationships in biological data. Motivated by the quality of 2D tree interaction, we adapt the planar tree-of-life metaphor to a virtual, semi-immersive 3D environment. A 3D environment extends the utility of this metaphor by allowing the user to view an entire data set in a single screen. Interrogation of the tree is implemented using 3D input devices. This real-time interrogation of the tree itself provides a quick means by which to qualitatively analyse the hierarchical data. In this paper, we describe the techniques underlying the implementation of such an environment. We conclude by considering the utility of tree metaphors as a basis for the representation of highly dimensional data sets. AVAILABILITY: Arbor3D (source code, a binary executable for SGI IRIX 6.4, Perl parsers, and sample Newick data files) are available via the Internet (http://xian.tamu.edu/Arbor3D/). Arbor3D can be displayed in "CAVE simulator" mode on an SGI workstation screen, or as an interactive virtual environment on a projection workbench. CONTACT: druths@rice.edu; echen@cs.rice.edu; leland@xian.tamu.edu  相似文献   

18.
Strausz J 《Magyar onkologia》2006,50(2):121-125
Bronchoscopic imaging and diagnostics are tightly connected with radiological and pathological techniques. While computer tomography (virtual bronchoscopy) makes possible to mimic a realistic endobronchial situation, autofluorescent bronchoscopy holds significant potential to discover precancerous lesions not identifiable by standard bronchoscopy. Endoscopic ultrasound and fluoroscopy can be applied in order to obtain images and tissue samples from the extrabronchial areas. Electromagnetic navigation during flexible bronchoscopy, a novel technology that facilitates approaching peripheral lung lesions, involves creating an electromagnetic field around the thorax and localizing an endoscopic tool using a microsensor overlaid upon previously acquired CT images. In conclusion, parallel use of invasive and non-invasive imaging has the potential for considerable improvements in the diagnostic possibilities of routine bronchoscopic procedures.  相似文献   

19.
Realistic computer simulation of neurosurgical procedures requires incorporation of the mechanical properties of brain tissue in the mathematical model. Possible applications of computer simulation of neurosurgery include non-rigid registration, virtual reality training and operation planning systems and robotic devices to perform minimally invasive brain surgery. A number of constitutive models of brain tissue, both single-phase and bi-phasic, have been proposed in recent years. The major deficiency of most of them, however, is the fact that they were identified using experimental data obtained in vitro and there is no certainty whether they can be applied in the realistic in vivo setting. In this paper we attempt to show that previously proposed by us hyper-viscoelastic constitutive model of brain tissue can be applied to simulating surgical procedures. An in vivo indentation experiment is described. The force-displacement curve for the loading speed typical for surgical procedures is concave upward containing no linear portion from which a meaningful elastic modulus might be determined. In order to properly analyse experimental data, a three-dimensional, non-linear finite element model of the brain was developed. Magnetic resonance imaging techniques were used to obtain geometric information needed for the model. The shape of the force-displacement curve obtained using the numerical solution was very similar to the experimental one. The predicted forces were about 31% lower than those recorded during the experiment. Having in mind that the coefficients in the model had been identified based on experimental data obtained in vitro, and large variability of mechanical properties of biological tissues, such agreement can be considered as very good. By appropriately increasing material parameters describing instantaneous stiffness of the tissue one is able, without changing the structure of the model, to reproduce experimental curve almost perfectly. Numerical studies showed also that the linear, viscoelastic model of brain tissue is not appropriate for the modelling brain tissue deformation even for moderate strains.  相似文献   

20.
For radiofrequency ablation (RFA) of liver tumors, evaluation of vascular architecture, post-RFA necrosis prediction, and the choice of a suitable needle placement strategy using conventional radiological techniques remain difficult. In an attempt to enhance the safety of RFA, a 3D simulator, treatment planning, and training tool, that simulates the insertion of the needle, the necrosis of the treated area, and proposes an optimal needle placement, has been developed. The 3D scenes are automatically reconstructed from enhanced spiral CT scans. The simulator takes into account the cooling effect of local vessels greater than 3 mm in diameter, making necrosis shapes more realistic. Optimal needle positioning can be automatically generated by the software to produce complete destruction of the tumor, with maximum respect of the healthy liver and of all major structures to avoid. We also studied how the use of virtual reality and haptic devices are valuable to make simulation and training realistic and effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号