首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-expression of the auxiliary β1 subunit with the pore forming α subunit of BK dramatically alters apparent calcium sensitivity. Investigation of the mechanism underlying the increase in calcium sensitivity of BK in smooth muscle has concentrated on the energetic effect of β1′s interaction with α. We take a novel approach, exploring whether β1 modification of calcium sensitivity reflects altered interaction between the channel protein and surrounding lipids. We reconstituted hSlo BK α and BK α+β1 channels into two sets of bilayers. One set contained POPE with POPS, POPG, POPA and POPC, where the length of acyl chains is constant, but surface charge differs. The second set is a series of neutral bilayers formed from DOPE with phosphatidylcholines (PCs) of varying acyl chain lengths: C (14∶1), C (18∶1), C (22∶1) and C (24∶1), and with brain sphingomyelin (SPM), in which surface charge is constant, but bilayer thickness varies. The increase in calcium sensitivity caused by the β1 subunit was preserved in negatively charged lipid bilayers but not in neutral bilayers, indicating that modification of apparent Ca2+ sensitivity by β1 is modulated by membrane lipids, requiring negatively charged lipids in the membrane. Moreover, the presence of β1 reduces BK activity in thin bilayers of PC 14∶1 and thick bilayers containing SPM, but has no significant effect on activity of BK in PC 18∶1, PC 22∶1 and PC 24∶1 bilayers. These data suggest that auxiliary β1 subunits fine-tune channel gating not only through direct subunit-subunit interactions but also by modulating lipid-protein interactions.  相似文献   

2.
Large-conductance Ca2+-activated K+ (BK) channels are composed of a pore-forming α and a variable number of auxiliary β subunits and play important roles in regulating excitability, action potential waveforms and firing patterns, particularly in neurons and endocrine and cardiovascular cells. The β2 subunits increase the diversity of gating and pharmacological properties. Its extracellular loop contains eight cysteine residues, which can pair to form a high-order structure, underlying the stability of the extracellular loop of β2 subunits and the functional effects on BK channels. However, how these cysteines form disulfide bonds still remains unclear. To address this, based on the fact that the rectification and association of BK α to β2 subunits are highly sensitive to disruption of the disulfide bonds in the extracellular loop of β2, we developed a rectification ratio based assay by combining the site-directed mutagenesis, electrophysiology and enzymatic cleavage. Three disulfide bonds: C1(C84)-C5(C113), C3(C101)-C7(C148) and C6(C142)-C8C(174) are successfully deduced in β2 subunit in complex with a BK α subunit, which are helpful to predict structural model of β2 subunits through computational simulation and to understand the interface between the extracellular domain of the β subunits and the pore-forming α subunit.  相似文献   

3.
Large-conductance Ca2+- and voltage-activated potassium (MaxiK or BK) channels are composed of a pore-forming α subunit (Slo) and 4 types of auxiliary β subunits or just a pore-forming α subunit. Although multiple N-linked glycosylation sites in the extracellular loop of β subunits have been identified, very little is known about how glycosylation influences the structure and function of BK channels. Using a combination of site-directed mutagenesis, western blot and patch-clamp recordings, we demonstrated that 3 sites in the extracellular loop of β2 subunit are N-glycosylated (N-X-T/S at N88, N96 and N119). Glycosylation of these sites strongly and differentially regulate gating kinetics, outward rectification, toxin sensitivity and physical association between the α and β2 subunits. We constructed a model and used molecular dynamics (MD) to simulate how the glycosylation facilitates the association of α/β2 subunits and modulates the dimension of the extracellular cavum above the pore of the channel, ultimately to modify biophysical and pharmacological properties of BK channels. Our results suggest that N-glycosylation of β2 subunits plays crucial roles in imparting functional heterogeneity of BK channels, and is potentially involved in the pathological phenotypes of carbohydrate metabolic diseases.  相似文献   

4.
5.
Large-conductance voltage- and Ca2+-gated K+ channels are negative-feedback regulators of excitability in many cell types. They are complexes of α subunits and of one of four types of modulatory β subunits. These have intracellular N- and C-terminal tails and two transmembrane (TM) helices, TM1 and TM2, connected by an ∼100-residue extracellular loop. Based on endogenous disulfide formation between engineered cysteines (Cys), we found that in β2 and β3, as in β1 and β4, TM1 is closest to αS1 and αS2 and TM2 is closest to αS0. Mouse β3 (mβ3) has seven Cys in its loop, one of which is free, and this Cys readily forms disulfides with Cys substituted in the extracellular flanks of each of αS0–αS6. We identified by elimination mβ3-loop Cys152 as the only free Cys. We inferred the disulfide-bonding pattern of the other six Cys. Using directed proteolysis and fragment sizing, we determined this pattern first among the four loop Cys in β1. These are conserved in β2–β4, which have four additional Cys (eight in total), except that mβ3 has one fewer. In β1, disulfides form between Cys at aligned positions 1 and 8 and between Cys at aligned positions 5 and 6. In mβ3, the free Cys is at position 7; position 2 lacks a Cys present in all other β2–β4; and the disulfide pattern is 1–8, 3–4, and 5–6. Presumably, Cys 2 cross-links to Cys 7 in all other β2–β4. Cross-linking of mβ3 Cys152 to Cys substituted in the flanks of αS0–S5 attenuated the protection against iberiotoxin (IbTX); cross-linking of Cys152 to K296C in the αS6 flank and close to the pore enhanced protection against IbTX. In no case was N-type inactivation by the N-terminal tail of mβ3 perturbed. Although the mβ3 loop can move, its position with Cys152 near αK296, in which it blocks IbTX binding, is likely favored.  相似文献   

6.
We investigated the expression of splice variants and β-subunits of the BK channel (big conductance Ca2+-activated K+ channel, Slo1, MaxiK, KCa1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An α-subunit splice variant X1+ 24 was found expressed (RT-PCR) in nervous tissue only where also the SS4+ 81 variant was dominating with little expression of the short form SS40. SS4+ 81 was present in some cerebral vessels too. The SS2+ 174 variant (STREX) was found in both blood vessels and in nervous tissue. In situ hybridization data supported the finding of SS4+ 81 and SS2+ 174 in vascular smooth muscle and trigeminal ganglion. β-subunits β2 and β4 showed high expression in brain and trigeminal ganglion and some in cerebral vessels while β1 showed highest expression in blood vessels. β3 was found only in testis and possibly brain. A novel splice variant X2+ 92 was found, which generates a stop codon in the intracellular C-terminal part of the protein. This variant appears non-functional as a homomer but may modulate the function of other splice-variants when expressed in Xenopus oocytes. In conclusion a great number of splice variant and β-subunit combinations likely exist, being differentially expressed among nervous and vascular tissues.  相似文献   

7.
Large conductance, voltage and Ca2+ activated K+ channels (BK channels) are abundantly expressed throughout the body and are important regulators of smooth muscle tone and neuronal excitability. Their dysfunction is implicated in various diseases including overactive bladder, hypertension and erectile dysfunction. Therefore, BK channel openers bear significant therapeutic potential to treat the above diseases. GoSlo-SR compounds were designed to be potent and efficacious BK channel openers. Although their structural activity relationships, activation in both BKα and BKαβ channels and the hypothetical mode of action of these compounds has been studied in detail in recent years, their effectiveness to open the BKαγ channels still remains unexplored. In this study, we have examined the efficacy of 3 closely related GoSlo-SR openers, GoSlo-SR-5-6 (SR-5-6), GoSlo-SR-5-44 (SR-5-44) and GoSlo-SR-5-130 (SR-5-130) using inside out patches on BKα channels coexpressed with 4 different LRRC (γ1–4) subunits in HEK293 cells. Our data suggests that the activation effects due to SR-5-6 were not significantly affected in the presence of γ1–4 subunits. Interestingly, the effects of more efficacious BK channel opener SR-5-44 were altered by different γ subunits. In cells expressing BKα channels, the shift in V1/2 (ΔV1/2) induced by SR-5-44 (3 μM) was ?76 ± 3 mV, whereas it was significantly reduced by ~70 % in BKαγ1 channels (ΔV1/2= ?23 ± 3, p < 0.001, ANOVA). In BKαγ2 channels the ΔV1/2 was ?36 ± 1 mV, which was less than that observed in BKαγ3 and BKαγ4 channels where the ΔV1/2 was ?47 ± 5 mV, and ?82 ± 5 mV, respectively. Additionally, the excitatory effects of a ‘β specific’ BK channel opener, SR-5-130 were only partially restored in the patches containing BKαγ1–4 channels. Together this data highlights that subtle modifications in GoSlo-SR structures alter their effectiveness on BK channels with accessory γ subunits and this study might provide a scaffold for the development of more tissue specific BK channel openers.  相似文献   

8.
We demonstrated previously that BK (KCa1.1) channel activity (NPo) increases in response to bisphenol A (BPA). Moreover, BK channels containing regulatory β1 subunits were more sensitive to the stimulatory effect of BPA. How BPA increases BK channel NPo remains mostly unknown. Estradiol activates BK channels by binding to an extracellular site, but neither the existence nor location of a BPA binding site has been demonstrated. We tested the hypothesis that an extracellular binding site is responsible for activation of BK channels by BPA. We synthesized membrane-impermeant BPA-monosulfate (BPA-MS) and used patch clamp electrophysiology to study channels composed of α or α + β1 subunits in cell-attached (C-A), whole-cell (W-C), and inside-out (I-O) patches. In C-A patches, bath application of BPA-MS (100 μM) had no effect on the NPo of BK channels, regardless of their subunit composition. Importantly, however, subsequent addition of membrane-permeant BPA (100 μM) increased the NPo of both α and α + β1 channels in C-A patches. The C-A data indicate that in order to alter BK channel NPo, BPA must interact with the channel itself (or some closely associated partner) and diffusible messengers are not involved. In W-C patches, 100 μM BPA-MS activated current in cells expressing α subunits, whereas cells expressing α + β1 subunits responded similarly to a log-order lower concentration (10 μM). The W-C data suggest that an extracellular activation site exists, but do not eliminate the possibility that an intracellular site may also be present. In I-O patches, where the cytoplasmic face was exposed to the bath, BPA-MS had no effect on the NPo of BK α subunits, but BPA increased it. BPA-MS increased the NPo of α + β1 channels in I-O patches, but not as much as BPA. We conclude that BPA activates BK α via an extracellular site and that BPA-sensitivity is increased by the β1 subunit, which may also constitute part of an intracellular binding site.  相似文献   

9.
We demonstrated previously that BK (KCa1.1) channel activity (NPo) increases in response to bisphenol A (BPA). Moreover, BK channels containing regulatory β1 subunits were more sensitive to the stimulatory effect of BPA. How BPA increases BK channel NPo remains mostly unknown. Estradiol activates BK channels by binding to an extracellular site, but neither the existence nor location of a BPA binding site has been demonstrated. We tested the hypothesis that an extracellular binding site is responsible for activation of BK channels by BPA. We synthesized membrane-impermeant BPA-monosulfate (BPA-MS) and used patch clamp electrophysiology to study channels composed of α or α + β1 subunits in cell-attached (C-A), whole-cell (W-C), and inside-out (I-O) patches. In C-A patches, bath application of BPA-MS (100 μM) had no effect on the NPo of BK channels, regardless of their subunit composition. Importantly, however, subsequent addition of membrane-permeant BPA (100 μM) increased the NPo of both α and α + β1 channels in C-A patches. The C-A data indicate that in order to alter BK channel NPo, BPA must interact with the channel itself (or some closely associated partner) and diffusible messengers are not involved. In W-C patches, 100 μM BPA-MS activated current in cells expressing α subunits, whereas cells expressing α + β1 subunits responded similarly to a log-order lower concentration (10 μM). The W-C data suggest that an extracellular activation site exists, but do not eliminate the possibility that an intracellular site may also be present. In I-O patches, where the cytoplasmic face was exposed to the bath, BPA-MS had no effect on the NPo of BK α subunits, but BPA increased it. BPA-MS increased the NPo of α + β1 channels in I-O patches, but not as much as BPA. We conclude that BPA activates BK α via an extracellular site and that BPA-sensitivity is increased by the β1 subunit, which may also constitute part of an intracellular binding site.  相似文献   

10.
Arachidonic acid (AA) is a fatty acid involved in the modulation of several ion channels. Previously, we reported that AA activates the high conductance Ca2+- and voltage-dependent K+ channel (BK) in vascular smooth muscle depending on the expression of the auxiliary β1 subunit. Here, using the patch-clamp technique on BK channel co-expressed with β1 subunit in a heterologous cell expression system, we analyzed whether AA modifies the three functional modules involved in the channel gating: the voltage sensor domain (VSD), the pore domain (PD), and the intracellular calcium sensor domain (CSD). We present evidence that AA activates BK channel in a direct way, inducing VSD stabilization on its active configuration observed as a significant left shift in the Q-V curve obtained from gating currents recordings. Moreover, AA facilitates the channel opening transitions when VSD are at rest, and the CSD are unoccupied. Furthermore, the activation was independent of the intracellular Ca2+ concentration and reduced when the BK channel was co-expressed with the Y74A mutant of the β1 subunit. These results allow us to present new insigths in the mechanism by which AA modulates BK channels co-expressed with its auxiliary β1 subunit.  相似文献   

11.
A family of tissue-specific auxiliary β subunits modulates large conductance voltage- and calcium-activated potassium (BK) channel gating properties to suit their diverse functions. Paradoxically, β subunits both promote BK channel activation through a stabilization of voltage sensor activation and reduce BK channel openings through an increased energetic barrier of the closed-to-open transition. The molecular determinants underlying β subunit function, including the dual gating effects, remain unknown. In this study, we report the first identification of a β1 functional domain consisting of Y74, S104, Y105, and I106 residues located in the extracellular loop of β1. These amino acids reside within two regions of highest conservation among related β1, β2, and β4 subunits. Analysis in the context of the Horrigan-Aldrich gating model revealed that this domain functions to both promote voltage sensor activation and also reduce intrinsic gating. Free energy calculations suggest that the dual effects of the β1 Y74 and S104-I106 domains can be largely accounted for by a relative destabilization of channels in open states that have few voltage sensors activated. These results suggest a unique and novel mechanism for β subunit modulation of voltage-gated potassium channels wherein interactions between extracellular β subunit residues with the external portions of the gate and voltage sensor regulate channel opening.  相似文献   

12.
In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca2+-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ1 subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (COX) inhibitors. Under these conditions the elevation of tissue EET levels using an inhibitor of the soluble epoxide hydrolase (sEH-I), further increased the hypoxic contraction. Direct administration of 11,12-EET also increased pulmonary artery pressure, and both the sEH-I and 11,12-EET effects were prevented by iberiotoxin and absent in BKβ1 −/− mice. In pulmonary artery smooth muscle cells treated with NOS and COX inhibitors and loaded with the potentiometric dye, di-8-ANEPPS, 11,12-EET induced depolarization while the BK channel opener NS1619 elicited hyperpolarization indicating there was no effect of the EET on classical plasma membrane BK channels. In pulmonary artery smooth muscle cells a subpopulation of BK channels is localized in mitochondria. In these cells, 11,12-EET elicited an iberiotoxin-sensitive loss of mitochondrial membrane potential (JC-1 fluorescence) leading to plasma membrane depolarization, an effect not observed in BKβ1 −/− cells. Mechanistically, stimulation with 11,12-EET time-dependently induced the association of the BK α and β1 subunits. Our data indicate that in the absence of NO and prostacyclin 11,12-EET contributes to pulmonary vasoconstriction by stimulating the association of the α and β1 subunits of mitochondrial BK channels. The 11,12-EET-induced activation of BK channels results in loss of the mitochondrial membrane potential and depolarization of the pulmonary artery smooth muscle cells.  相似文献   

13.
The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca(2+)-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein-protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit.  相似文献   

14.
Tao J  Shi J  Yan L  Chen Y  Duan YH  Ye P  Feng Q  Zhang JW  Shu XQ  Ji YH 《PloS one》2011,6(3):e15896

Background

BK channels are usually activated by membrane depolarization and cytoplasmic Ca2+. Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca2+-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca2+ sensitivity than other known BK channel subtypes.

Methodology and Principal Findings

The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca2+ imaging. In the presence of cytoplasmic Ca2+, martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC50 of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitive change of cytoplasmic Ca2+ concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca2+. The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca2+, the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn''t be affected by the toxin.

Conclusions and Significance

Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca2+-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin.  相似文献   

15.
Anna N. Bukiya 《FEBS letters》2009,583(17):2779-20212
Ethanol-induced inhibition of myocyte large conductance, calcium- and voltage-gated potassium (BK) current causes cerebrovascular constriction, yet the molecular targets mediating EtOH action remain unknown. Using BK channel-forming (cbv1) subunits from cerebral artery myocytes, we demonstrate that EtOH potentiates and inhibits current at lower and higher than ∼15 μM, respectively. By increasing cbv1’s apparent -sensitivity, accessory BK β1 subunits shift the activation-to-inhibition crossover of EtOH action to <3 μM , with consequent inhibition of current under conditions found during myocyte contraction. Knocking-down KCNMB1 suppresses EtOH-reduction of arterial myocyte BK current and vessel diameter. Therefore, BK β1 is the molecular effector of alcohol-induced BK current inhibition and cerebrovascular constriction.  相似文献   

16.
The large-conductance, voltage- and Ca2+-gated K+ (BK) channel consists of four α subunits, which form a voltage- and Ca2+-gated channel, and up to four modulatory β subunits. The β1 subunit is expressed in smooth muscle, where it slows BK channel kinetics and shifts the conductance–voltage (G-V) curve to the left at [Ca2+] > 2 µM. In addition to the six transmembrane (TM) helices, S1–S6, conserved in all voltage-dependent K+ channels, BK α has a unique seventh TM helix, S0, which may contribute to the unusual rightward shift in the G-V curve of BK α in the absence of β1 and to a leftward shift in its presence. Such a role is supported by the close proximity of S0 to S3 and S4 in the voltage-sensing domain. Furthermore, on the extracellular side of the membrane, one of the two TM helices of β1, TM2, is adjacent to S0. We have now analyzed induced disulfide bond formation between substituted Cys residues on the cytoplasmic side of the membrane. There, in contrast, S0 is closest to the S2–S3 loop, from which position it is displaced on the addition of β1. The cytoplasmic ends of β1 TM1 and TM2 are adjacent and are located between the S2–S3 loop of one α subunit and S1 of a neighboring α subunit and are not adjacent to S0; i.e., S0 and TM2 have different trajectories through the membrane. In the absence of β1, 70% of disulfide bonding of W43C (S0) and L175C (S2–S3) has no effect on V50 for activation, implying that the cytoplasmic end of S0 and the S2–S3 loop move in concert, if at all, during activation. Otherwise, linking them together in one state would obstruct the transition to the other state, which would certainly change V50.  相似文献   

17.
Abstract

We report the isolation of the genes encoding the β1 and β2 adrenergic receptors from dog genomic DNA. Sequence analysis of both genes revealed intronless open reading frames of 473 and 415 amino acid residues, receptively. Heterologous expression of both receptors in CHO cells indicated that both receptors are functionally similar to the human homologs. Comparing the dog β1 and β2 adrenergic receptors, the β1 receptor appears to bind to G proteins more tightly than the β2 receptor. Heterologously expressed receptors provide a convenient system for evaluating novel receptor agonists and antagonists.  相似文献   

18.
Although similarity of pharmacological responses to certain stimuli between guinea pigs and humans has been reported, this has been poorly defined by a molecular biological approach. In this study, we cloned the gene of guinea pig ?1-adrenoceptor (ADRB1). The deduced amino acid sequence of guinea pig ADRB1 (467-aa) showed 91% and 92% identity with the human and rat ADRB1 sequences, respectively. Using HEK293T cells expressing guinea pig, human and rat ADRB1s independently, we elucidated the functional characteristics of each ADRB1. The ligand-binding profiles and the concentration-response relationships for isoprenaline-induced cyclic adenosine monophosphate (cAMP) production were similar among the three ADRB1s. Isoprenaline also induced phosphorylation of extracellular-signal related kinases (ERK) through ADRB1s in a concentration-dependent manner. The minimum effective concentration of isoprenaline for phosphorylation of ERK, through guinea pig ADRB1 was the same as through human ADRB1, but markedly lower than that of through rat ADRB1. ERK phosphorylation through guinea pig ADRB1 was sensitive to pertussis toxin, a dominant-negative ras and PD98059, indicating that a G(i)-mediated pathway is involved in the ADRB1/ERK signaling loop. These results suggest that the G(i)-coupling efficacy of guinea pig and human ADRB1s may be higher than that of rat ADRB1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号