首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Purified rat renal brush-border membrane vesicles possess a heat-labile enzyme activity which hydrolyses NAD+. A reciprocal relationship exists between the disappearance of NAD+ and the appearance of adenosine; 2 mol of Pi are liberated from each mol of NAD+ incubated with brush-border membrane vesicles. Freezing and thawing brush-border membrane vesicles does not enhance the initial rate of NAD+ hydrolysis. Preincubation of brush-border membrane vesicles with NAD+ results in inhibition of Na+-dependent Pi-transport activity, whereas Na+-dependent glucose transport is not affected. EDTA, which prevents the release of Pi from NAD+ and which itself has no direct effect on brush-border membrane Pi transport, reverses the NAD+ inhibition of Na+-dependent Pi transport. These results suggest that it is the Pi liberated from NAD+ and not NAD+ itself that inhibits Na+-dependent Pi transport.  相似文献   

2.
NAD+ had a biphasic effect on the NADH oxidase activity in electron transport particles from Mycobacterium phlei. The oxidase was inhibited competitively by NAD+ at concentrations above 0.05 mM. NAD+ in concentrations from 0.02 to 0.05 mM resulted in maximum stimulation of both NADH oxidation and oxygen uptake with concentrations of substrate both above and below the apparent K-M. Oxygen uptake and cyanide sensitivity indicated that the NAD+ stimulatory effect was linked to the terminal respiratory chain. The stimulatory effect was specific for NAD+. NAD+ was also specific in protecting the oxidase during heating at 50 degrees and against inactivation during storage at 0 degrees. NAD+ glycohydrolase did not affect stimulation nor heat protection of the NADH oxidase activity if the particles were previously preincubated with NAD+. Binding studies revealed that the particles bound approximately 3.6 pmol of [14C1NAD+ per mg of electron transport particle protein. Although bound NAD+ represented only a small fraction of the total added NAD+ necessary for maximal stimulation, removal of the apparently unbound NAD+ by Sephadex chromatography revealed that particles retained the stimulated state for at least 48 hours. Further addition of NAD+ to stimulated washed particles resulted in competitive inhibition of oxidase activity. Desensitization of the oxidase to the stimulatory effect of NAD+ was achieved by heating the particles at 50 degrees for 2 min without appreciable loss of enzymatic activity. Kinetic studies indicated that addition of NADH to electron transport particles prior to preincubation with NAD+ inhibited stimulation. In addition, NADH inhibited binding of [14C]NAD+. The utilization of artificial electron acceptors, which act as a shunt of the respiratory chain at or near the flavoprotein component, indicated that NAD+ acts as at the level of the NADH dehydrogenase at a site other than the catalytic one resulting in a conformational change which causes restoration as well as protection of oxidase activity.  相似文献   

3.
Functionally intact mitochondria from rabbit reticulocytes are characterized by a low NAD+ level after the preparation (0.29 nmoles NAD+ + NADH/mg protein). They are apparently impermeable for NADH and exhibit a slow net uptake of NAD+. From the increase of O2-uptake in state 3 and the increase of NADH concentration in state 4 of respiration after the addition of NAD+ we concluded that 3--10 min are necessary for the saturation with NAD+ at 23 degrees C. 2mM NAD+ extramitochondrially are not sufficient to saturate the mitochondria with NADH and probably NAD+, too. Because of the net uptake of NAD+ we assume that reticulocyte mitochondria lose NAD+ during their preparation. If they are incubated with the physiological concentration of 300 micrometer NAD+, which was found in reticulocytes, a value of 1.9 nmoles NAD+ + NADH mg protein was calculated. At an extramitochondrial NAD+ concentration of 300 micrometer, reticulocyte mitochondria exhibit an almost maximal O2-uptake in the presence of oxaloacetate or alpha-ketoglutarate. It is concluded that the mitochondria in intact reticulocytes contain the "normal" complement of NAD+ + NADH.  相似文献   

4.
Alkylating agents cause a marked depletion of cellular NAD+ levels by activating nuclear ADP-ribosyl transferase (ADPRT), which utilizes NAD+ as a substrate in the synthesis of poly(ADP-ribose). As a consequence of NAD+ depletion, it is possible that cellular ATP pools could be depleted. Because of this, exogenously supplied NAD+ had been proposed as a way to counteract some of the effects of an alkylator. We found that exogenously supplied NAD+ significantly increased intracellular levels of NAD+ in MMS- and MNNG-treated V79 Chinese hamster cells. Cytotoxicity was not changed by the exogenously supplied NAD+, however. 3-Aminobenzamide (3-ABA), an ADPRT inhibitor, prevented the depletion of intracellular NAD+ by MMS or MNNG treatment and potentiated cytotoxicity. As was the case without 3-ABA, exogenously supplied NAD+ plus 3-ABA did not change the cytotoxicity, even though NAD+ levels were increased. Intracellular ATP levels were also measured and were found to be unaffected following MMS treatment, and only slightly depleted following MNNG treatment. Exogenously supplied NAD+ raised these levels above those for their respective controls. Because survival was unaffected by elevated levels of NAD+ and ATP, our results suggest that depletion of cellular NAD+ pools following MMS and MNNG treatment is not a critical factor in determining cytotoxicity for these V79 cells. The energy reserves of V79 cells, at doses of MMS or MNNG which kill 99% of the cells, are apparently adequate to maintain normal levels of ATP.  相似文献   

5.
Bisubstrate inhibitors, obtained by covalently linking 2-oxoglutarate with NAD+ and NADP+, were synthesized and tested for their ability to inhibit NAD+- and NADP+-dependent isocitrate dehydrogenases from pig heart mitochondria. The NADP+-dependent enzyme was specifically inhibited by the NADP oxoglutarate adduct and not by the NAD adduct. The NADP adduct was competitive with both coenzyme and substrate, isocitrate. In contrast, the NAD+-dependent enzyme was inhibited by both adducts. NAD oxoglutarate is competitive with both NAD+ and isocitrate while the NADP adduct is competitive with isocitrate but not with NAD+. Nevertheless conditions could be set up so that use of these inhibitors would be feasible for a metabolic study.  相似文献   

6.
Initial velocity and product inhibition studies were carried out on UDP-glucose dehydrogenase (UDPglucose: NAD+ 6-oxidoreductase, EC 1.1.1.22) from beef liver to determine if the kinetics of the reaction are compatible with the established mechanism. An intersecting initial velocity pattern was observed with NAD+ as the variable substrate and UDPG as the changing fixed substrate. UDPglucuronic acid gave competitive inhibition of UDPG and non-competitive inhibition of NAD+. Inhibition by NADH gave complex patterns.Lineweaver-Burk plots of 1/upsilon versus 1/NAD+ at varied levels of NADH gave highly non-linear curves. At levels of NAD+ below 0.05 mM, non-competitive inhibition patterns were observed giving parabolic curves. Extrapolation to saturation with NAD+ showed NADH gave linear uncompetitive inhibition of UDPG if NAD+ was saturating. However, at levels of NAD+ above 0.10 mM, NADH became a competitive inhibitor of NAD+ (parabolic curves) and when NAD+ was saturating NADH gave no inhibition of UDPG. NADH was non-competitive versus UDPG when NAD+ was not saturating. These results are compatible with a mechanism in which UDPG binds first, followed by NAD+, which is reduced and released. A second mol of NAD+ is then bound, reduced, and released. The irreversible step in the reaction must occur after the release of the second mol of NADH but before the release of UDPglucuronic acid. This is apparently caused by the hydrolysis of a thiol ester between UDPglucoronic acid and the essential thiol group of the enzyme. Examination of rate equations indicated that this hydrolysis is the rate-limiting step in the overall reaction. The discontinuity in the velocities observed at high NAD+ concentrations is apparently caused by the binding of NAD+ in the active site after the release of the second mol of NADH, eliminating the NADH inhibition when NAD+ becomes saturating.  相似文献   

7.
The presence and some properties of an NAD+ transport system were examined in PA5, a Mg, Ca-ATPase [EC 3.6.1.3]-defective mutant strain of Escherichia coli W2252. NAD+ uptake was stimulated by exogenous energy sources and dependent on external substrate concentrations with an apparent Km of about 25 micrometer. Most of the radioactivity from [14C]-NAD+ accumulated in the cells was identified as NAD+. [14C]NAD+ uptake was competively inhibited by unlabeled NAD+, NADP+, NMN+ or nicotinamide. Similar uptake activity was also observed in W2252.  相似文献   

8.
9.
NAD+ glycohydrolase (NAD+ nucleosidase, EC 3.2.2.6) can be solubilized from calf spleen microsomes (microsomal fractions) by steapsin or by detergents to yield respectively a hydrophilic (i.e. water-soluble) and a hydrophobic form of the enzyme. The detergent-solubilized enzyme was successfully reassociated into phosphatidylcholine liposomes either by a cholate-dialysis or by a gel-filtration procedure. In both cases the incorporation of NAD+ glycohydrolase was found to be completely asymmetric, i.e. the active site of the enzyme was exposed only at the outer surface of the vesicles. By contrast, as judged by flotation experiments, the hydrophilic form of NAD+ glycohydrolase could not be reassociated into liposomes. These results are in agreement with the hypothesis that calf spleen NAD+ glycohydrolase is an amphipathic protein. When incorporated into large unilamellar vesicles composed of phosphatidylcholine, NAD+ glycohydrolase was not found to catalyse vectorial transfer of NAD+ by transglycosidation with nicotinamide as acceptor.  相似文献   

10.
The effect of NAD+ on lipoamide dehydrogenase from pig heart was investigated physicochemically. The observed and theoretical oxidation-reduction mid-point potentials for the oxidized lipoamide dehydrogenase (E)/two-electron-reduced lipoamide dehydrogenase (EH2) couple in the presence on NAD+ were -218 mV and -251 mV, respectively, at pH 6.0. Therefore, unexpectedly the mid-point potential of the enzyme became more positive on NAD+ binding. Decreases in the fluorescence lifetime and intensity and increase in the degree of polarization of enzyme-bound FAD were observed in the presence of NAD+. Fluorescence quenching of bound FAD by NAD+ was released by phenobarbital. The results suggest that NAD+ strengthens the intramolecular dynamic interaction between the isoalloxazine moiety and adenine moiety of bound FAD, and so alters the mid-point potential of the enzyme. These findings indicate that NAD+ acts not only as an acceptor of electrons from EH2, but also as an effector in the flavin-disulfide interaction of EH2.  相似文献   

11.
Binding of NAD+ by cholera toxin.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. The Km for NAD+ of cholera toxin working as an NAD+ glycohydrolase is 4 mM, and this is increased to about 50 mM in the presence of low-Mr ADP-ribose acceptors. Only molecules having both the adenine and nicotinamide moieties of NAD+ with minor alterations in the nicotinamide ring can be competitive inhibitors of this reaction. 2. This high Km for NAD+ is also reflected in the dissociation constant, Kd, which was determined by a variety of methods. 3. Results from equilibrium dialysis were subject to high error, but showed one binding site and a Kd of about 3 mM. 4. The A1 peptide of the toxin is digested by trypsin, and this digestion is completely prevented by concentrations of NAD+ above 50 mM. Measurement (by densitometric scanning of polyacrylamide-gel electrophoretograms) of the rate of tryptic digestion at different concentrations of NAD+ allowed a more accurate determination of Kd = 4.0 +/- 0.4 mM. Some analogues of NAD+ that are competitive inhibitors of the glycohydrolase reaction also prevented digestion.  相似文献   

12.
Thermoproteus tenax possesses two different glyceraldehyde-3-phosphate dehydrogenases, one specific for NADP+ and the other for NAD+. NADP(H) inhibits the NAD+-specific enzyme competetively with respect to NAD+ whereas NAD(H) virtually does not interact with the NADP+-specific enzyme. Both enzymes represent homomeric tetramers with subunit molecular masses of 39 kDa (NADP+-specific enzyme) and 49 kDa (NAD+-specific enzyme), respectively. The NADP+-specific enzyme shows significant homology to the known glyceraldehyde-3-phosphate dehydrogenases from eubacteria and eukaryotes as indicated by partial sequencing. The enzymes are thermostable, the NADP+-specific enzyme with a half-life of 35 min at 100 degrees C, the NAD+-specific enzyme with a half-line of greater than or equal to 20 min at 100 degrees C, depending on the protein concentration. Both enzymes show conformational and functional changes at 60-70 degrees C.  相似文献   

13.
Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of the known eukaryotic NAD+ synthetases are glutamine-dependent, hydrolyzing glutamine to glutamic acid to provide the attacking ammonia. In the prokaryotic world, some NAD+ synthetases are glutamine-dependent, whereas others can only use ammonia. Earlier, we noted a perfect correlation between presence of a domain related to nitrilase and glutamine dependence and then proved in the accompanying paper (Bieganowski, P., Pace, H. C., and Brenner, C. (2003) J. Biol. Chem. 278, 33049-33055) that the nitrilase-related domain is an essential, obligate intramolecular, thiol-dependent glutamine amidotransferase in the yeast NAD+ synthetase, Qns1. Independently, human NAD+ synthetase was cloned and shown to depend on Cys-175 for glutamine-dependent but not ammonia-dependent NAD+ synthetase activity. Additionally, it was claimed that a 275 amino acid open reading frame putatively amplified from human glioma cell line LN229 encodes a human ammonia-dependent NAD+ synthetase and this was speculated largely to mediate NAD+ synthesis in human muscle tissues. Here we establish that the so-called NADsyn2 is simply ammonia-dependent NAD+ synthetase from Pseudomonas, which is encoded on an operon with nicotinic acid phosphoribosyltransferase and, in some Pseudomonads, with nicotinamidase.  相似文献   

14.
The geometry of seven NAD+ analogues bound to horse liver alcohol dehydrogenase (LADH) modified only in their nicotinamide group, have been studied using AMBER molecular mechanics energy-minimization procedures. Starting geometries were taken from X-ray crystallographic data for NAD+/Me2SO/LADH reported by Eklund and co-workers. In this study the NAD+ analogues were encaged by the constituent amino acids of the enzyme within a range of 0.6 nm from the initial NAD+/Me2SO/Zn2+ complex. The calculational method used is able to rationalize individual substituent effects and to evaluate the essential interactions between NAD+ analogue, enzyme, Me2SO and Zn2+ without the necessity of additional X-ray data. The results presented here demonstrate that the reactivity of NAD+ derivatives as reported in literature can be qualitatively related to the position of the pyridine moiety in the active site.  相似文献   

15.
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.  相似文献   

16.
After an electrophoretic separation of proteins from Euglena gracilis and dry seeds of Phaseolus vulgaris in native conditions in polyacrylamide gels, gels were incubated in mixtures containing NAD+, Mg-ATP2-, glucose 6-phosphate, G6P dehydrogenase, and either phenazine ethosulfate and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (PES/MTT) or phenazine methosulfate and nitro blue tetrazolium (PMS/NBT) as coupled redox system for NAD+ kinase activity detection. In the presence of PES/MTT, 4 bands were revealed for E. gracilis, among which two corresponded to NAD+ kinase activity, the other corresponding to a NAD+ reductase activity due to alcohol dehydrogenase (ADH). In the presence of PMS/NBT, only the bands of NAD+ kinase activity were revealed. With Phaseolus vulgaris, 3 bands of ADH were always revealed in both mixtures, and only the use of PMS/NBT allowed the detection of NAD+ kinase as a fourth band. With both materials, NAD+ reductase staining in gels was intensifed in the presence of GTP or ATP and even further with ADP or GDP. The results demonstrate that: 1) the NAD+ kinase and NAD+ reductase are two distinct enzymes; 2) the NAD+ reductase corresponds to ADH.  相似文献   

17.
Nicotinamide adenine dinucleotide (NAD+) has been covalently attached to alginic acid using carbodiimide coupling, thereby producing a macromolecular adduct of NAD, which can be rendered either soluble or insoluble by adjustment of pH. It was found that this NAD+-alginic acid complex was enzymatically active, and also that the oxidized form could be electrochemically reduced without loss in enzymatic activity. This NAD+ adduct has now also been polarographically characterized as to its two-step reduction waves, which are slightly shifted toward more cathodic potential as compared to free NAD+. When controlled electrolysis was conducted to reduce the bound NAD+ at the cathode, the NADH so formed by electrochemical action was found to be again oxidizable either enzymatically or electrochemically without loss in co-enzymatic function. The NADH adduct produced by electrochemical reduction of the NAD+ adduct has also been characterized by voltammetry.  相似文献   

18.
Acute ammonia toxicity is mediated by excessive activation of NMDA receptors. Activation of NMDA receptors leads to activation of poly(ADP-ribose) polymerase (PARP) which mediates NMDA excitotoxicity. PARP is activated following DNA damage and may lead to cell death via NAD+ and ATP depletion. The aim of the present work was to assess whether acute ammonia intoxication in vivo leads to increased PARP in brain cells nuclei and to altered NAD+ and superoxide metabolism and the contribution of NMDA receptors to these alterations. Acute ammonia intoxication increases PARP content twofold in brain cells nuclei.NAD+ content decreased by 55% in rats injected with ammonia. This was not due to decreased NAD+ synthetase nor increased NAD+ hydrolase activities and would be due to increased NAD+ consumption by PARP. Superoxide radical formation increased by 75% in nuclei of brains of rats injected with ammonia, that also induced protein nitrotyrosylation and DNA damage. Blocking NMDA receptors prevented ammonia-induced PARP, superoxide and nitrotyrosylation increase, DNA damage and NAD+ decrease. These results show that acute ammonia intoxication in vivo leads to activation of NMDA receptors, leading to increased superoxide formation and PARP content and depletion of NAD+ in brain cells nuclei that contribute to ammonia toxicity.  相似文献   

19.
Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NAD+) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD+-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD+ concentrations were 2.3 mg/mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD+ was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD+ as well as the free YADH with and without NAD+. Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD+ at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NAD+ was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD+ revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD+. This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD+. On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD+ and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD+ at 50 degrees C than at 45 degrees C. This was considered to be because even at 50 degrees C the stabilization effect of lipid membranes on the tertiary and quaternary structures of the liposomal YADH allowed the enzyme to form its thermostable complex with NAD+ in liposomes.  相似文献   

20.
A sonicate of Corynebacterium flaccumfaciens AHU-1622 had the highest NAD+ kinase activity (1.22 mU/mL culture broth) of the strains of bacteria we investigated. This enzyme was thermostable, with activity maintained at 50 degrees C for 1 h. This treatment inactivated phosphatase activity. Resting cells of the bacterium also had NAD+ kinase activity when treated at 60 degrees C for 30 min with 0.2% Triton X-100. NADP+ production was achieved using 8 mumol NAD+, 8 mumol ATP, 16 mumol MgCl2, 1.6 mumol NaN3, and 12 mU NAD+ kinase (0.1 g of permeabilized wet cells) in 2 mL of 0.1 M phosphate buffer, pH 7.5. The conversion ratio of NADP+ from NAD+ was 75% after 10 h of incubation at 50 degrees C, and the amount of accumulated NADP+ was 3 mumol/mL of reaction mixture. The NAD+ kinase activity of the permeabilized cells was stable and did not decrease after repeated use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号